2017 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Intelligent Autonomous Systems 14
Localization and navigation inside GPS-denied buildings has been one of the main technological challenges of quadrocopter researches. Hereafter, this paper proposes and develops a supporting research platform integrated with 2D tag visual fiducials for quadrocopter indoor autonomous localization. Robot operating system (ROS) and Gazebo are simultaneously fused into the integrated platform. Under such circumstances, tag-involved images are sequentially captured via on-board cameras, while vehicle position/posture is achieved via off-board processing based on the open-source AprilTag algorithm. Simulation and experiments of the AR.Drone 2.0 are conducted to demonstrate the system architecture and workflow of the developed tag-in-loop indoor localization research platform. The results validate the effectiveness and application potentials of the ROS-Gazebo platform to support quadrocopters’ autonomous indoor localization, flight autopilot, and cooperative control, etc.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Das, A.K., et al.: A vision-based formation control framework. IEEE Trans. Robot. Autom.
18(5), 813–825 (2002)
2.
Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 0278364911434236 (2012)
3.
Ritz, R., et al.: Cooperative quadrocopter ball throwing and catching. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2012)
4.
Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: ICRA’09. IEEE International Conference on Robotics and Automation, 2009. IEEE (2009)
5.
Blösch, M., et al.: Vision based MAV navigation in unknown and unstructured environments. In: 2010 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2010)
6.
Achtelik, M., et al.: Onboard IMU and monocular vision based control for MAVs in unknown in-and outdoor environments. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2011)
7.
Bylow, E., et al.: Real-time camera tracking and 3D reconstruction using signed distance functions. Robotics: In: Science and Systems (RSS) Conference 2013, vol. 9 (2013)
8.
Achtelik, M., et al.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: SPIE Defense, Security, and Sensing. International Society for Optics and Photonics (2009)
9.
Huang, A.S., et al.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium on Robotics Research (ISRR) (2011)
10.
Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2011)
11.
Müller, M., Lupashin, S., D’Andrea, R.: Quadrocopter ball juggling. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2011)
12.
Eberli, D., et al.: Vision based position control for MAVs using one single circular landmark. J. Intell. Robot. Syst.
61(1–4), 495–512 (2011)
13.
Engel, J., Sturm, J., Cremers, D.: Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robot. Auton. Syst.
62(11), 1646–1656 (2014)
CrossRef
14.
Chu, C.-H., Yang, D.-N., Chen, M.-S.: Image stabilization for 2D barcode in handheld devices. In: Proceedings of the 15th International Conference on Multimedia. ACM (2007)
15.
Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2011)
16.
Wagner, D., et al.: Pose tracking from natural features on mobile phones. In: Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE Computer Society (2008)
17.
Mohan, A., et al.: Bokode: imperceptible visual tags for camera based interaction from a distance. ACM Trans. Graph. (TOG)
28(3), 98 (2009)
18.
Dijkshoorn, N.: Simultaneous localization and mapping with the ar. drone. Ph.D. dissertation, Masters thesis, Universiteit van Amsterdam (2012)
19.
Martinez, A., Fernández, E.: Learning ROS for Robotics Programming. Packt Publishing Ltd. (2013)
20.
Horaud, R., et al.: An analytic solution for the perspective 4-point problem. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR’89. IEEE (1989)
- Titel
- ROS-Gazebo Supported Platform for Tag-in-Loop Indoor Localization of Quadrocopter
- DOI
- https://doi.org/10.1007/978-3-319-48036-7_14
- Autoren:
-
Shuyuan Wang
Tianjiang Hu
- Sequenznummer
- 14