Skip to main content
Erschienen in: Journal of Materials Science 19/2018

09.07.2018 | Energy materials

Route to design highly efficient thermal rectifiers from microstructured cellular biomorphic materials

verfasst von: Xiao-Jun Li, Ning Li, Fei Ren, Kang Han Wang, Chong Lek Koh, Meng Wu, Hui-Qiong Wang, Jin-Cheng Zheng

Erschienen in: Journal of Materials Science | Ausgabe 19/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The application of electronic diodes has greatly motivated the development of industrial engineering, while predictably, thermal rectifiers, as thermal manipulation devices, might have broad applications in the renewable energy engineering. Here, we report a significant thermal rectification phenomenon observed by using a thermal rectifier solid-state device comprising microstructured cellular biomorphic materials and by measuring the thermal conductivities in the forward and reverse directions over a wide temperature range. Our theoretical studies, based on analytical method and simulation of finite element method, attributed the asymmetry of thermal transition in opposite directions to the microstructured cellular size-gradient geometry. We further demonstrated that the thermal rectification phenomenon was only observed when the thermal conductivity of the filled materials showed monotonic temperature dependence. Our present work suggests a convenient and practical route to design a highly efficient thermal rectifier by increasing the cellular size gradient or using materials with larger thermal conductivity to temperature ratios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Chumak K, Martynyak R (2012) Thermal rectification between two thermoelastic solids with a periodic array of rough zones at the interface. Int J Heat Mass Transf 55:5603–5608CrossRef Chumak K, Martynyak R (2012) Thermal rectification between two thermoelastic solids with a periodic array of rough zones at the interface. Int J Heat Mass Transf 55:5603–5608CrossRef
3.
Zurück zum Zitat dos Santos Bernardes MA (2014) Experimental evidence of the working principle of thermal diodes based on thermal stress and thermal contact conductance—thermal semiconductors. Int J Heat Mass Transf 73:354–357CrossRef dos Santos Bernardes MA (2014) Experimental evidence of the working principle of thermal diodes based on thermal stress and thermal contact conductance—thermal semiconductors. Int J Heat Mass Transf 73:354–357CrossRef
9.
Zurück zum Zitat Peyrard M (2006) The design of a thermal rectifier. Europhys Lett 76:49–55CrossRef Peyrard M (2006) The design of a thermal rectifier. Europhys Lett 76:49–55CrossRef
10.
Zurück zum Zitat Pereira E (2010) Thermal rectification in quantum graded mass systems. Phys Lett A 374:1933–1937CrossRef Pereira E (2010) Thermal rectification in quantum graded mass systems. Phys Lett A 374:1933–1937CrossRef
13.
Zurück zum Zitat Garcia-Garcia KI, Alvarez-Quintana J (2014) Thermal rectification assisted by lattice transitions. Int J Therm Sci 81:76–83CrossRef Garcia-Garcia KI, Alvarez-Quintana J (2014) Thermal rectification assisted by lattice transitions. Int J Therm Sci 81:76–83CrossRef
14.
Zurück zum Zitat Huang J, Li Q, Zheng Z, Xuan Y (2013) Thermal rectification based on thermochromic materials. Int J Heat Mass Transf 67:575–580CrossRef Huang J, Li Q, Zheng Z, Xuan Y (2013) Thermal rectification based on thermochromic materials. Int J Heat Mass Transf 67:575–580CrossRef
15.
Zurück zum Zitat Lee J, Varshney V, Roy AK, Ferguson JB, Farmer BL (2012) Thermal rectification in three-dimensional asymmetric nanostructure. Nano Lett 12:3491–3496CrossRef Lee J, Varshney V, Roy AK, Ferguson JB, Farmer BL (2012) Thermal rectification in three-dimensional asymmetric nanostructure. Nano Lett 12:3491–3496CrossRef
18.
Zurück zum Zitat Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735CrossRef Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735CrossRef
21.
Zurück zum Zitat Roberts NA, Walker DG (2011) A review of thermal rectification observations and models in solid materials. Int J Therm Sci 50:648–662CrossRef Roberts NA, Walker DG (2011) A review of thermal rectification observations and models in solid materials. Int J Therm Sci 50:648–662CrossRef
22.
Zurück zum Zitat Tso CY, Chao CYH (2016) Solid-state thermal diode with shape memory alloys. Int J Heat Mass Transf 93:605–611CrossRef Tso CY, Chao CYH (2016) Solid-state thermal diode with shape memory alloys. Int J Heat Mass Transf 93:605–611CrossRef
24.
Zurück zum Zitat Chang CW, Okawa D, Majumdar A, Zettl A (2006) Solid-state thermal rectifier. Science 314:1121–1124CrossRef Chang CW, Okawa D, Majumdar A, Zettl A (2006) Solid-state thermal rectifier. Science 314:1121–1124CrossRef
26.
Zurück zum Zitat Jeżowski A, Rafalowicz J (1978) Heat flow asymmetry on a junction of quartz with graphite. Phys Status Solidi 47:229–232CrossRef Jeżowski A, Rafalowicz J (1978) Heat flow asymmetry on a junction of quartz with graphite. Phys Status Solidi 47:229–232CrossRef
27.
Zurück zum Zitat Balcerek K, Tyc T (1978) Heat flux rectification in tin-α-brass system. Phys Status Solidi 47:K125–K128CrossRef Balcerek K, Tyc T (1978) Heat flux rectification in tin-α-brass system. Phys Status Solidi 47:K125–K128CrossRef
30.
Zurück zum Zitat He J, Zhao LD, Zheng JC, Doak JW, Wu H, Wang HQ, Lee Y, Wolverton C, Kanatzidis MG, Dravid VP (2013) Role of sodium doping in lead chalcogenide thermoelectrics. J Am Chem Soc 135:4624–4627CrossRef He J, Zhao LD, Zheng JC, Doak JW, Wu H, Wang HQ, Lee Y, Wolverton C, Kanatzidis MG, Dravid VP (2013) Role of sodium doping in lead chalcogenide thermoelectrics. J Am Chem Soc 135:4624–4627CrossRef
31.
Zurück zum Zitat He J, Girard SN, Zheng JC, Zhao L, Kanatzidis MG, Dravid VP (2012) Strong phonon scattering by layer structured pbsns(2) in pbte based thermoelectric materials. Adv Mater 24:4440–4444CrossRef He J, Girard SN, Zheng JC, Zhao L, Kanatzidis MG, Dravid VP (2012) Strong phonon scattering by layer structured pbsns(2) in pbte based thermoelectric materials. Adv Mater 24:4440–4444CrossRef
32.
Zurück zum Zitat He J, Sootsman JR, Girard SN, Zheng JC, Wen J, Zhu Y, Kanatzidis MG, Dravid VP (2010) On the origin of increased phonon scattering in nanostructured pbte based thermoelectric materials. J Am Chem Soc 132:8669–8675CrossRef He J, Sootsman JR, Girard SN, Zheng JC, Wen J, Zhu Y, Kanatzidis MG, Dravid VP (2010) On the origin of increased phonon scattering in nanostructured pbte based thermoelectric materials. J Am Chem Soc 132:8669–8675CrossRef
33.
Zurück zum Zitat He J, Blum ID, Wang HQ, Girard SN, Doak J, Zhao LD, Zheng JC, Casillas G, Wolverton C, Jose-Yacaman M, Seidman DN, Kanatzidis MG, Dravid VP (2012) Morphology control of nanostructures: Na-doped pbte-pbs system. Nano Lett 12:5979–5984CrossRef He J, Blum ID, Wang HQ, Girard SN, Doak J, Zhao LD, Zheng JC, Casillas G, Wolverton C, Jose-Yacaman M, Seidman DN, Kanatzidis MG, Dravid VP (2012) Morphology control of nanostructures: Na-doped pbte-pbs system. Nano Lett 12:5979–5984CrossRef
34.
Zurück zum Zitat Rong H, Lin W-Q, Zheng J-C, Lu M (2014) Thermal characterization of a bridge-link carbon nanotubes array used as a thermal adhesive. Int J Adhes Adhes 49:58–63CrossRef Rong H, Lin W-Q, Zheng J-C, Lu M (2014) Thermal characterization of a bridge-link carbon nanotubes array used as a thermal adhesive. Int J Adhes Adhes 49:58–63CrossRef
35.
Zurück zum Zitat Zheng J-C, Zhang L, Kretinin AV, Morozov SV, Wang YB, Wang T, Li X-J, Ren F, Zhang J, Lu C-Y, Chen J-C, Lu M, Wang H-Q, Geim AK, Novoselov KS (2016) High thermal conductivity of hexagonal boron nitride laminates. 2D Mater 3:011004CrossRef Zheng J-C, Zhang L, Kretinin AV, Morozov SV, Wang YB, Wang T, Li X-J, Ren F, Zhang J, Lu C-Y, Chen J-C, Lu M, Wang H-Q, Geim AK, Novoselov KS (2016) High thermal conductivity of hexagonal boron nitride laminates. 2D Mater 3:011004CrossRef
36.
Zurück zum Zitat Zhang L, Li N, Wang H-Q, Zhang Y, Ren F, Liao X-X, Li Y-P, Wang X-D, Huang Z, Dai Y, Yan H, Zheng J-C (2017) Tuning the thermal conductivity of strontium titanate through annealing treatments. Chin Phys B 26:016602CrossRef Zhang L, Li N, Wang H-Q, Zhang Y, Ren F, Liao X-X, Li Y-P, Wang X-D, Huang Z, Dai Y, Yan H, Zheng J-C (2017) Tuning the thermal conductivity of strontium titanate through annealing treatments. Chin Phys B 26:016602CrossRef
37.
Zurück zum Zitat Go DB, Sen M (2010) On the condition for thermal rectification using bulk materials. J Heat Transf 132:124502CrossRef Go DB, Sen M (2010) On the condition for thermal rectification using bulk materials. J Heat Transf 132:124502CrossRef
38.
Zurück zum Zitat An T-C, Lin C-A, Chiu C-H, Liu C-H, Hu P-T (2008) Thermal retention performance and gas removal effect of bamboo charcoal/PET blended fibers. Polym Plast Technol Eng 47(9):895–901CrossRef An T-C, Lin C-A, Chiu C-H, Liu C-H, Hu P-T (2008) Thermal retention performance and gas removal effect of bamboo charcoal/PET blended fibers. Polym Plast Technol Eng 47(9):895–901CrossRef
39.
Zurück zum Zitat Yang L, H-b Liu, D-s Zhang, Liu J-Z, He Y-D (2011) Electron microscopy study on microstructure of bamboo charcoal. J Chin Electr Microsc Soc 30(2):138–141 Yang L, H-b Liu, D-s Zhang, Liu J-Z, He Y-D (2011) Electron microscopy study on microstructure of bamboo charcoal. J Chin Electr Microsc Soc 30(2):138–141
Metadaten
Titel
Route to design highly efficient thermal rectifiers from microstructured cellular biomorphic materials
verfasst von
Xiao-Jun Li
Ning Li
Fei Ren
Kang Han Wang
Chong Lek Koh
Meng Wu
Hui-Qiong Wang
Jin-Cheng Zheng
Publikationsdatum
09.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2462-6

Weitere Artikel der Ausgabe 19/2018

Journal of Materials Science 19/2018 Zur Ausgabe

Mechanochemical Synthesis

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.