Skip to main content
Erschienen in: Intelligent Service Robotics 1/2018

04.12.2017 | Original Research Paper

Routing-based navigation of dense mobile robots

verfasst von: Rahul Kala

Erschienen in: Intelligent Service Robotics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the future, many teams of robots will navigate in home or office environments, similar to dense crowds operating currently in different scenarios. The paper aims to route a large number of robots so as to avoid build-up of congestions, similar to the problem of route planning of traffic systems. In this paper, first probabilistic roadmap approach is used to get a roadmap for online motion planning of robots. A graph search-based technique is used for motion planning. In the literature, typically the search algorithms consider only the static obstacles during this stage, which results in too many robots being scheduled on popular/shorter routes. The algorithm used here therefore penalizes roadmap edges that lie in regions with large robot densities so as to judiciously route the robots. This planning is done continuously to adapt the path to changing robotic densities. The search returns a deliberative trajectory to act as a guide for the navigation of the robot. A point at a distant of the deliberative path becomes the immediate goal of the reactive system. A ‘centre of area’-based reactive navigation technique is used to reactively avoid robots and other dynamic obstacles. In order to avoid two robots blocking each other and causing a deadlock, a deadlock avoidance scheme is designed that detects deadlocks, makes the robots wait for a random time and then allows them to make a few random steps. Experimental results show efficient navigation of a large number of robots. Further, routing results in effectively managing the robot densities so as to enable an efficient navigation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, CambridgeMATH Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, CambridgeMATH
2.
Zurück zum Zitat Tiwari R, Shukla A, Kala R (2013) Intelligent planning for mobile robotics. IGI Global Publishers, HersheyCrossRef Tiwari R, Shukla A, Kala R (2013) Intelligent planning for mobile robotics. IGI Global Publishers, HersheyCrossRef
3.
Zurück zum Zitat Chand P, Carnegie DA (2012) A two-tiered global path planning strategy for limited memory mobile robots. Robot Auton Syst 60(3):309–321CrossRef Chand P, Carnegie DA (2012) A two-tiered global path planning strategy for limited memory mobile robots. Robot Auton Syst 60(3):309–321CrossRef
4.
Zurück zum Zitat Kala R, Shukla A, Tiwari R (2010) Fusion of probabilistic \(\text{ A }^{*}\) algorithm and fuzzy inference system for robotic path planning. Artif Intel Rev 33(4):275–306CrossRef Kala R, Shukla A, Tiwari R (2010) Fusion of probabilistic \(\text{ A }^{*}\) algorithm and fuzzy inference system for robotic path planning. Artif Intel Rev 33(4):275–306CrossRef
5.
Zurück zum Zitat Kavraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580CrossRef Kavraki LE, Svestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580CrossRef
6.
Zurück zum Zitat Bohlin R, Kavraki LE (2000) Path planning using lazy PRM. In: Proceedings of the IEEE international conference on robotics and automation, pp 521–528 Bohlin R, Kavraki LE (2000) Path planning using lazy PRM. In: Proceedings of the IEEE international conference on robotics and automation, pp 521–528
7.
Zurück zum Zitat Claes R, Holvoet T, Weyns D (2011) A decentralized approach for anticipatory vehicle routing using delegate multiagent systems. IEEE Trans Intell Transp Syst 12(2):64–373CrossRef Claes R, Holvoet T, Weyns D (2011) A decentralized approach for anticipatory vehicle routing using delegate multiagent systems. IEEE Trans Intell Transp Syst 12(2):64–373CrossRef
8.
Zurück zum Zitat Kala R, Warwick K (2015) Congestion avoidance in city traffic. J Adv Transp 49(4):581–595CrossRef Kala R, Warwick K (2015) Congestion avoidance in city traffic. J Adv Transp 49(4):581–595CrossRef
9.
Zurück zum Zitat Spears WM, Spears DF, Hamann JC, Heil R (2004) Distributed, physics-based control of swarms of vehicles. Auton Robot 17(2–3):137–162CrossRef Spears WM, Spears DF, Hamann JC, Heil R (2004) Distributed, physics-based control of swarms of vehicles. Auton Robot 17(2–3):137–162CrossRef
10.
Zurück zum Zitat Pelechano N, Allbeck JM, Badler NI (2007) Controlling individual agents in high-density crowd simulation, In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 99–108 Pelechano N, Allbeck JM, Badler NI (2007) Controlling individual agents in high-density crowd simulation, In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 99–108
11.
Zurück zum Zitat Musse SR, Thalmann D (2001) Hierarchical model for real time simulation of virtual human crowds. IEEE Trans Virtual Comput Graph 7(2):152–164CrossRef Musse SR, Thalmann D (2001) Hierarchical model for real time simulation of virtual human crowds. IEEE Trans Virtual Comput Graph 7(2):152–164CrossRef
12.
Zurück zum Zitat Curtis S, Best AP, Manocha D (2016) Menge: a modular framework for simulating crowd movement. Collect Dyn 1(A1):1–40 Curtis S, Best AP, Manocha D (2016) Menge: a modular framework for simulating crowd movement. Collect Dyn 1(A1):1–40
13.
Zurück zum Zitat Gu Q, Deng Z (2011) Context-aware motion diversification for crowd simulation. IEEE Comput Graph Appl 31(5):54–65CrossRef Gu Q, Deng Z (2011) Context-aware motion diversification for crowd simulation. IEEE Comput Graph Appl 31(5):54–65CrossRef
14.
Zurück zum Zitat Kountouriotis V, Thomopoulos SCA, Papelis Y (2014) An agent-based crowd behaviour model for real time crowd behavior simulation. Pattern Recogn Lett 44:30–38CrossRef Kountouriotis V, Thomopoulos SCA, Papelis Y (2014) An agent-based crowd behaviour model for real time crowd behavior simulation. Pattern Recogn Lett 44:30–38CrossRef
15.
Zurück zum Zitat Han Y, Liu H, Moore P (2017) Extended route choice model based on available evacuation route set and its application in crowd evacuation simulation. Simul Model Pract Theory 75:1–16CrossRef Han Y, Liu H, Moore P (2017) Extended route choice model based on available evacuation route set and its application in crowd evacuation simulation. Simul Model Pract Theory 75:1–16CrossRef
16.
Zurück zum Zitat Golas A, Narain R, Curtis S, Lin MC (2014) Hybrid long-range collision avoidance for crowd simulation. IEEE Trans Vis Comput Graph 20(7):1022–1034CrossRef Golas A, Narain R, Curtis S, Lin MC (2014) Hybrid long-range collision avoidance for crowd simulation. IEEE Trans Vis Comput Graph 20(7):1022–1034CrossRef
17.
Zurück zum Zitat Cowlagi RV, Tsiotras P (2012) Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles. IEEE Trans Robot 28(2):379–395CrossRef Cowlagi RV, Tsiotras P (2012) Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles. IEEE Trans Robot 28(2):379–395CrossRef
18.
Zurück zum Zitat Sgorbissa A, Zaccaria R (2012) Planning and obstacle avoidance in mobile robotics. Robot Auton Syst 60(4):628–638CrossRef Sgorbissa A, Zaccaria R (2012) Planning and obstacle avoidance in mobile robotics. Robot Auton Syst 60(4):628–638CrossRef
19.
Zurück zum Zitat Chang YC, Yamamoto Y (2009) Path planning of wheeled mobile robot with simultaneous free space locating capability. Intell Serv Robot 2(1):9–22CrossRef Chang YC, Yamamoto Y (2009) Path planning of wheeled mobile robot with simultaneous free space locating capability. Intell Serv Robot 2(1):9–22CrossRef
20.
Zurück zum Zitat Yao Z, Gupta K (2011) Distributed roadmaps for robot navigation in sensor networks. IEEE Trans Robot 27(5):997–1004CrossRef Yao Z, Gupta K (2011) Distributed roadmaps for robot navigation in sensor networks. IEEE Trans Robot 27(5):997–1004CrossRef
21.
Zurück zum Zitat Clark CM (2005) Probabilistic road map sampling strategies for multi-robot motion planning. Robot Auton Syst 53:244–264CrossRef Clark CM (2005) Probabilistic road map sampling strategies for multi-robot motion planning. Robot Auton Syst 53:244–264CrossRef
22.
Zurück zum Zitat Chai R, Su J (2013) Motion planning for multi-robot coordination. In: 13th IFAC symposium on large scale complex systems: theory and applications, Shanghai, China, pp 129–134 Chai R, Su J (2013) Motion planning for multi-robot coordination. In: 13th IFAC symposium on large scale complex systems: theory and applications, Shanghai, China, pp 129–134
23.
Zurück zum Zitat Alvarez-Sanchez JR, de la Paz Lopez F, Troncoso JMC, de Santos Sierra D (2010) Reactive navigation in real environments using partial center of area method. Robot Auton Syst 58(12):1231–1237CrossRef Alvarez-Sanchez JR, de la Paz Lopez F, Troncoso JMC, de Santos Sierra D (2010) Reactive navigation in real environments using partial center of area method. Robot Auton Syst 58(12):1231–1237CrossRef
24.
Zurück zum Zitat Sezer V, Gokasan M (2012) A novel obstacle avoidance algorithm: follow the gap method. Robot Auton Syst 60(9):1123–1134CrossRef Sezer V, Gokasan M (2012) A novel obstacle avoidance algorithm: follow the gap method. Robot Auton Syst 60(9):1123–1134CrossRef
25.
Zurück zum Zitat Kim Y, Kwon SJ (2015) A heuristic obstacle avoidance algorithm using vanishing point and obstacle angle. Intell Serv Robot 8(3):175–183CrossRef Kim Y, Kwon SJ (2015) A heuristic obstacle avoidance algorithm using vanishing point and obstacle angle. Intell Serv Robot 8(3):175–183CrossRef
26.
Zurück zum Zitat Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17(7):760–772CrossRef Fiorini P, Shiller Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17(7):760–772CrossRef
27.
Zurück zum Zitat Snape J, van den Berg J, Guy SJ, Manocha D (2011) The hybrid reciprocal velocity obstacle. IEEE Trans Robot 27(4):696–706CrossRef Snape J, van den Berg J, Guy SJ, Manocha D (2011) The hybrid reciprocal velocity obstacle. IEEE Trans Robot 27(4):696–706CrossRef
28.
Zurück zum Zitat Rashid AT, Ali AA, Frasca M, Fortuna L (2012) Multi-robot collision-free navigation based on reciprocal orientation. Robot Auton Syst 60(10):1221–1230CrossRef Rashid AT, Ali AA, Frasca M, Fortuna L (2012) Multi-robot collision-free navigation based on reciprocal orientation. Robot Auton Syst 60(10):1221–1230CrossRef
29.
Zurück zum Zitat Karagoz CS, Bozma HI, Koditschek DE (2014) Coordinated navigation of multiple independent disk-shaped robots. IEEE Trans Robot 30(6):1289–1304CrossRef Karagoz CS, Bozma HI, Koditschek DE (2014) Coordinated navigation of multiple independent disk-shaped robots. IEEE Trans Robot 30(6):1289–1304CrossRef
31.
Zurück zum Zitat Patil S, van den Berg J, Curtis S, Lin MC, Manocha D (2011) Directing crowd simulations using navigation fields. IEEE Trans Vis Comput Graph 17(2):244–254CrossRef Patil S, van den Berg J, Curtis S, Lin MC, Manocha D (2011) Directing crowd simulations using navigation fields. IEEE Trans Vis Comput Graph 17(2):244–254CrossRef
32.
Zurück zum Zitat Hsu D, Sanchez-Ante G, Sun Z (2005) Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proceedings of the 2005 IEEE international conference on robotics and automation, Barcelona, Spain, pp 3874–3880 Hsu D, Sanchez-Ante G, Sun Z (2005) Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proceedings of the 2005 IEEE international conference on robotics and automation, Barcelona, Spain, pp 3874–3880
33.
Zurück zum Zitat Rodriguez S, Thomas S, Pearce R, Amato NM (2008) RESAMPL: a region-sensitive adaptive motion planner. In: Algorithmic Foundation of Robotics VII, Springer Tracts in Advanced Robotics. Springer, Berlin, pp 285–300 Rodriguez S, Thomas S, Pearce R, Amato NM (2008) RESAMPL: a region-sensitive adaptive motion planner. In: Algorithmic Foundation of Robotics VII, Springer Tracts in Advanced Robotics. Springer, Berlin, pp 285–300
34.
Zurück zum Zitat Morales M, Tapia L, Pearce R, Rodriguez S, Amat NM (2005) A machine learning approach for feature-sensitive motion planning. In: Algorithmic Foundations of Robotics VI, Springer Tracts in Advanced Robotics, Springer, Berlin, vol 17, pp 361–376 Morales M, Tapia L, Pearce R, Rodriguez S, Amat NM (2005) A machine learning approach for feature-sensitive motion planning. In: Algorithmic Foundations of Robotics VI, Springer Tracts in Advanced Robotics, Springer, Berlin, vol 17, pp 361–376
35.
Zurück zum Zitat Kala R (2016) Homotopy conscious roadmap construction by fast sampling of narrow corridors. Appl Intell 45(4):1089–1102CrossRef Kala R (2016) Homotopy conscious roadmap construction by fast sampling of narrow corridors. Appl Intell 45(4):1089–1102CrossRef
36.
Zurück zum Zitat Hsu D, Jiang T, Reif J, Sun Z (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proceedings of the 2003 IEEE international conference on robotics and automation, vol 3, pp 4420–4426 Hsu D, Jiang T, Reif J, Sun Z (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proceedings of the 2003 IEEE international conference on robotics and automation, vol 3, pp 4420–4426
37.
Zurück zum Zitat Amato NM, Bayazit OB, Dale LK, Jones C, Vallejo D (1998) Obprm: an obstacle-based prm for 3d workspaces. In: Agarwal P, Kavraki LE, Mason M (eds) Robotics: the algorithmic perspective. A.K. Peters, Natick, pp 155–168 Amato NM, Bayazit OB, Dale LK, Jones C, Vallejo D (1998) Obprm: an obstacle-based prm for 3d workspaces. In: Agarwal P, Kavraki LE, Mason M (eds) Robotics: the algorithmic perspective. A.K. Peters, Natick, pp 155–168
38.
Zurück zum Zitat La Valle SM, Kuffner JJ (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400CrossRef La Valle SM, Kuffner JJ (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400CrossRef
39.
Zurück zum Zitat Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE international conference on robotics and automation, pp 995–1001 Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings of the IEEE international conference on robotics and automation, pp 995–1001
40.
Zurück zum Zitat Russell S, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn. Pearson, HarlowMATH Russell S, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn. Pearson, HarlowMATH
41.
Zurück zum Zitat Helbing D, Molnar P (1995) Social force model for pedestrians dynamics. Phy Rev E 51(5):42–82CrossRef Helbing D, Molnar P (1995) Social force model for pedestrians dynamics. Phy Rev E 51(5):42–82CrossRef
42.
Zurück zum Zitat Martinez-Garcia E, Torres-Cordoba R (2012) Exponential fields formulation for WMR navigation. J Appl Bion Biomech 9(4):375–397CrossRef Martinez-Garcia E, Torres-Cordoba R (2012) Exponential fields formulation for WMR navigation. J Appl Bion Biomech 9(4):375–397CrossRef
Metadaten
Titel
Routing-based navigation of dense mobile robots
verfasst von
Rahul Kala
Publikationsdatum
04.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Intelligent Service Robotics / Ausgabe 1/2018
Print ISSN: 1861-2776
Elektronische ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-017-0243-8

Weitere Artikel der Ausgabe 1/2018

Intelligent Service Robotics 1/2018 Zur Ausgabe

Neuer Inhalt