Skip to main content
Erschienen in: Topics in Catalysis 2-4/2016

30.07.2015 | Original Paper

Ru–Ni Catalyst in the Combined Dry-Steam Reforming of Methane: The Importance in the Metal Order Addition

verfasst von: Andrea Álvarez M, Miguel Ángel Centeno, José Antonio Odriozola

Erschienen in: Topics in Catalysis | Ausgabe 2-4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biogas is one of the main biomass-energy resources. Its use for syngas production with a H2/CO ratio close to two would have huge environmental, social and economic impact in the actual energetic scenario. However, the use of dry reforming, where the two main components are transformed into syngas, does not allow the desired H2/CO ratio. For this reason, the addition of water is proposed. The process was performed with two Ru–Ni catalysts where the metal order in the impregnation process was varied. The catalysts were prepared either by simultaneous or consecutive impregnation of the active phases and its catalytic performance in the combined dry-steam reforming of methane was tested. The catalysts were characterized by XRF, XRD, SBET, TPR-H2 and Raman spectroscopy. The existence of a strong Ni–Ru interaction is evidenced by Raman spectroscopy and TPR-H2 in the sample synthesized by the simultaneous impregnation. Concerning the catalytic activity, this sample presents the highest CH4 and CO2 conversion values in the entire composition rate and the lowest amount of carbon deposits after reaction. After pulse, and reactivity tests it was concluded that the higher Ni–Ru interaction displayed by the catalyst synthesized by the simultaneous impregnation, enhances the carbon gasification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Boudghene Stambouli A, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sustain Energy Rev 6:295–304CrossRef Boudghene Stambouli A, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sustain Energy Rev 6:295–304CrossRef
2.
Zurück zum Zitat Dry ME (2001) High quality diesel via the Fischer-Tropsch process. J Chem Technol Biotechnol 77:43–50CrossRef Dry ME (2001) High quality diesel via the Fischer-Tropsch process. J Chem Technol Biotechnol 77:43–50CrossRef
3.
Zurück zum Zitat Stambouli AB (2002) Fuel cells: the expectations for an environmental-friendly and sustainable source of energy. Renew Sustain Energy Rev 15:4507–4520CrossRef Stambouli AB (2002) Fuel cells: the expectations for an environmental-friendly and sustainable source of energy. Renew Sustain Energy Rev 15:4507–4520CrossRef
4.
Zurück zum Zitat Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455CrossRef Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev 6:433–455CrossRef
5.
Zurück zum Zitat Sousa-Aguiar EF, Appel LG, Mota C (2005) Natural gas chemical transformations: the path to refining in the future. Catal Today 101:3–7CrossRef Sousa-Aguiar EF, Appel LG, Mota C (2005) Natural gas chemical transformations: the path to refining in the future. Catal Today 101:3–7CrossRef
6.
Zurück zum Zitat Froment GF (2000) Production of synthesis gas by steam and CO2 reforming of natural gas. J Mol Catal A Chem 163:147–156CrossRef Froment GF (2000) Production of synthesis gas by steam and CO2 reforming of natural gas. J Mol Catal A Chem 163:147–156CrossRef
7.
Zurück zum Zitat Angeli SD, Monteleone G, Giaconia A, Lemonidou AA (2014) State-of-the-art catalysts for CH4 steam reforming at low temperature. Int J Hydrogen Energy 39:1979–1997CrossRef Angeli SD, Monteleone G, Giaconia A, Lemonidou AA (2014) State-of-the-art catalysts for CH4 steam reforming at low temperature. Int J Hydrogen Energy 39:1979–1997CrossRef
8.
Zurück zum Zitat Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35:88–96CrossRef Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35:88–96CrossRef
9.
Zurück zum Zitat Oliveira ELG, Grande CA, Rodrigues AE (2009) Steam methane reforming in a Ni/Al2O3 catalyst: kinetics and diffusional limitations in extrudates. Can J Chem Eng 87:945–956CrossRef Oliveira ELG, Grande CA, Rodrigues AE (2009) Steam methane reforming in a Ni/Al2O3 catalyst: kinetics and diffusional limitations in extrudates. Can J Chem Eng 87:945–956CrossRef
10.
Zurück zum Zitat Rostrup-Nielsen JR (1994) Catalysis and large-scale conversion of natural gas. Catal Today 21:257–267CrossRef Rostrup-Nielsen JR (1994) Catalysis and large-scale conversion of natural gas. Catal Today 21:257–267CrossRef
11.
Zurück zum Zitat Guczi L, Erdohelyi A (2012) Catalysis for alternative energy Generation. Springer, New York, pp 1–543CrossRef Guczi L, Erdohelyi A (2012) Catalysis for alternative energy Generation. Springer, New York, pp 1–543CrossRef
12.
Zurück zum Zitat Bradford MCJ, Vannice MA (1999) Review. CO2 reforming of CH4. Catal Rev 41:1–42CrossRef Bradford MCJ, Vannice MA (1999) Review. CO2 reforming of CH4. Catal Rev 41:1–42CrossRef
13.
Zurück zum Zitat Bradford MCJ, Vannice MA (1996) Review. Catalytic reforming of CH4 with CO2. II. Reaction Kinetics. Appl Catal A 142:97–122CrossRef Bradford MCJ, Vannice MA (1996) Review. Catalytic reforming of CH4 with CO2. II. Reaction Kinetics. Appl Catal A 142:97–122CrossRef
14.
Zurück zum Zitat Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4 over supported Ru catalysts. J Catal 183:69–75CrossRef Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4 over supported Ru catalysts. J Catal 183:69–75CrossRef
15.
Zurück zum Zitat Bradford MCJ, Vannice MA (1999) The role of metal-support interactions in CO2 reforming of CH4. Catal Today 50:1–10CrossRef Bradford MCJ, Vannice MA (1999) The role of metal-support interactions in CO2 reforming of CH4. Catal Today 50:1–10CrossRef
16.
Zurück zum Zitat Wang HY, Ruckenstein E (2000) Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalyst: the effect of support. Appl Catal A 204:143–152CrossRef Wang HY, Ruckenstein E (2000) Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalyst: the effect of support. Appl Catal A 204:143–152CrossRef
17.
Zurück zum Zitat Ryi S-K, Lee S-W, Park J-W et al. (2013) Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catal Today 236:49–56CrossRef Ryi S-K, Lee S-W, Park J-W et al. (2013) Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catal Today 236:49–56CrossRef
18.
Zurück zum Zitat Rostrup-Nielsen J (1984) Catalytic steam reforming. In: Anderson J, Boudart M (eds) Catalysis. Springer, Berlin, pp 1–117CrossRef Rostrup-Nielsen J (1984) Catalytic steam reforming. In: Anderson J, Boudart M (eds) Catalysis. Springer, Berlin, pp 1–117CrossRef
19.
Zurück zum Zitat Rostrup-Nielsen JR (2000) New aspects of syngas production. Catal Today 63:159–164CrossRef Rostrup-Nielsen JR (2000) New aspects of syngas production. Catal Today 63:159–164CrossRef
20.
Zurück zum Zitat Rostrup-Nielsen JR, Sehested J (2002) Review. Hydrogen and synthesis gas by steam and CO2 reforming. Adv Synth Catal 47:65–139CrossRef Rostrup-Nielsen JR, Sehested J (2002) Review. Hydrogen and synthesis gas by steam and CO2 reforming. Adv Synth Catal 47:65–139CrossRef
21.
Zurück zum Zitat Koo KY, Roh H-S, Jung UH et al (2009) Combined H2O and CO2 reforming of CH4 over nano-sized Ni/MgO-Al2O3 catalysts for synthesis gas production for gas to liquid (GTL): effect of Mg/Al mixed ratio on coke formation. Catal Today 146:166–171CrossRef Koo KY, Roh H-S, Jung UH et al (2009) Combined H2O and CO2 reforming of CH4 over nano-sized Ni/MgO-Al2O3 catalysts for synthesis gas production for gas to liquid (GTL): effect of Mg/Al mixed ratio on coke formation. Catal Today 146:166–171CrossRef
22.
Zurück zum Zitat Koo KY, Roh H-S, Jung UH, Yoon WL (2012) Combined H2O and CO2 reforming of CH4 over Ce-promoted Ni/Al2O3 catalyst for gas to liquid (GTL) process: enhancement of Ni–CeO2 interaction. Catal Today 185:126–130CrossRef Koo KY, Roh H-S, Jung UH, Yoon WL (2012) Combined H2O and CO2 reforming of CH4 over Ce-promoted Ni/Al2O3 catalyst for gas to liquid (GTL) process: enhancement of Ni–CeO2 interaction. Catal Today 185:126–130CrossRef
23.
Zurück zum Zitat Choudhary VR, Rajput AM (1996) Simultaneous Carbon Dioxide and Steam Reforming of Methane to Syngas over NiO–CaO Catalyst. Ind Eng Chem Res 35:3934–3939CrossRef Choudhary VR, Rajput AM (1996) Simultaneous Carbon Dioxide and Steam Reforming of Methane to Syngas over NiO–CaO Catalyst. Ind Eng Chem Res 35:3934–3939CrossRef
24.
Zurück zum Zitat Gangadharan P, Kanchi KC, Lou HH (2012) Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem Eng Res Des 90(1956–1968):8 Gangadharan P, Kanchi KC, Lou HH (2012) Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem Eng Res Des 90(1956–1968):8
25.
Zurück zum Zitat Islam MR (2015) Chapter 3—important features of unconventional gas. In: Islam MR (ed) Unconventional gas reservoirs. Gulf Professional Publishing, Boston, pp 71–127 Islam MR (2015) Chapter 3—important features of unconventional gas. In: Islam MR (ed) Unconventional gas reservoirs. Gulf Professional Publishing, Boston, pp 71–127
26.
Zurück zum Zitat Holditch SA (2013) Unconventional oil and gas resource development—let’s do it right. J Unconv Oil Gas Resour 1–2:2–8CrossRef Holditch SA (2013) Unconventional oil and gas resource development—let’s do it right. J Unconv Oil Gas Resour 1–2:2–8CrossRef
27.
Zurück zum Zitat Weijermars R, Drijkoningen G, Heimovaara TJ et al (2011) Unconventional gas research initiative for clean energy transition in Europe. J Nat Gas Sci Eng 3:402–412CrossRef Weijermars R, Drijkoningen G, Heimovaara TJ et al (2011) Unconventional gas research initiative for clean energy transition in Europe. J Nat Gas Sci Eng 3:402–412CrossRef
28.
Zurück zum Zitat McGlade C, Speirs J, Sorrell S (2013) Unconventional gas—a review of regional and global resource estimates. Energy 55:571–584CrossRef McGlade C, Speirs J, Sorrell S (2013) Unconventional gas—a review of regional and global resource estimates. Energy 55:571–584CrossRef
29.
Zurück zum Zitat Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212:17–60CrossRef Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212:17–60CrossRef
30.
Zurück zum Zitat Wang S, Lu GQM (2000) Effects of promoters on catalytic activity and carbon deposition of Ni/γ-Al2O3 catalysts in CO2 reforming of CH4. J Chem Technol Biotechnol 75:589–595CrossRef Wang S, Lu GQM (2000) Effects of promoters on catalytic activity and carbon deposition of Ni/γ-Al2O3 catalysts in CO2 reforming of CH4. J Chem Technol Biotechnol 75:589–595CrossRef
31.
Zurück zum Zitat Horiuchi T, Sakuma K, Fukui T et al (1996) Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl Catal A 144:111–120CrossRef Horiuchi T, Sakuma K, Fukui T et al (1996) Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl Catal A 144:111–120CrossRef
32.
Zurück zum Zitat Penkova A, Bobadilla L, Ivanova S et al (2011) Hydrogen production by methanol steam reforming on NiSn/MgO-Al2O3 catalysts: the role of MgO addition. Appl Catal A 392:184–191CrossRef Penkova A, Bobadilla L, Ivanova S et al (2011) Hydrogen production by methanol steam reforming on NiSn/MgO-Al2O3 catalysts: the role of MgO addition. Appl Catal A 392:184–191CrossRef
33.
Zurück zum Zitat Bobadilla LF, Penkova A, Romero-Sarria F et al (2014) Influence of the acid-base properties over NiSn/MgO-Al2O3 catalysts in the hydrogen production from glycerol steam reforming. Int J Hydrogen Energy 39:5704–5712CrossRef Bobadilla LF, Penkova A, Romero-Sarria F et al (2014) Influence of the acid-base properties over NiSn/MgO-Al2O3 catalysts in the hydrogen production from glycerol steam reforming. Int J Hydrogen Energy 39:5704–5712CrossRef
34.
Zurück zum Zitat Bobadilla LF, Palma S, Ivanova S et al (2013) Steam reforming of methanol over supported Ni and Ni–Sn nanoparticles. Int J Hydrogen Energy 38:6646–6656CrossRef Bobadilla LF, Palma S, Ivanova S et al (2013) Steam reforming of methanol over supported Ni and Ni–Sn nanoparticles. Int J Hydrogen Energy 38:6646–6656CrossRef
35.
Zurück zum Zitat Trimm DL (1999) Catalysts for the control of coking during steam reforming. Catal Today 49:3–10CrossRef Trimm DL (1999) Catalysts for the control of coking during steam reforming. Catal Today 49:3–10CrossRef
36.
Zurück zum Zitat Trimm DL (1997) Coke formation and minimisation during steam reforming reactions. Catal Today 37:233–238CrossRef Trimm DL (1997) Coke formation and minimisation during steam reforming reactions. Catal Today 37:233–238CrossRef
37.
Zurück zum Zitat Rostrup-Nielsen J, Trimm DL (1977) Mechanisms of carbon formation on nickel-containing catalysts. J Catal 48:155–165CrossRef Rostrup-Nielsen J, Trimm DL (1977) Mechanisms of carbon formation on nickel-containing catalysts. J Catal 48:155–165CrossRef
38.
Zurück zum Zitat de Miguel SR, Vilella IMJ, Maina SP et al (2012) Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane. Appl Catal A 435–436:10–18CrossRef de Miguel SR, Vilella IMJ, Maina SP et al (2012) Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane. Appl Catal A 435–436:10–18CrossRef
39.
Zurück zum Zitat Jeong JH, Lee JW, Seo DJ et al (2006) Ru-doped Ni catalysts effective for the steam reforming of methane without the pre-reduction treatment with H2. Appl Catal A 302:151–156CrossRef Jeong JH, Lee JW, Seo DJ et al (2006) Ru-doped Ni catalysts effective for the steam reforming of methane without the pre-reduction treatment with H2. Appl Catal A 302:151–156CrossRef
40.
Zurück zum Zitat Crisafulli C, Scirè S, Minicò S, Solarino L (2002) Ni-Ru bimetallic catalyst for the CO2 reforming of methane. Appl Catal A 225:1–9CrossRef Crisafulli C, Scirè S, Minicò S, Solarino L (2002) Ni-Ru bimetallic catalyst for the CO2 reforming of methane. Appl Catal A 225:1–9CrossRef
41.
Zurück zum Zitat Crisafulli C, Maggiore R, Minicò S, Galvagno S (1999) CO2 reforming of methane over Ni-Ru catalyst and Ni-Pd bimetallic catalyst. Catal Lett 59:21–26CrossRef Crisafulli C, Maggiore R, Minicò S, Galvagno S (1999) CO2 reforming of methane over Ni-Ru catalyst and Ni-Pd bimetallic catalyst. Catal Lett 59:21–26CrossRef
42.
Zurück zum Zitat Mukainakano Y, Yoshida K, Kado S et al (2008) Catalytic performance and characterization of Pt–Ni bimetallic catalysts for oxidative steam reforming of methane. Chem Eng Sci 63:4891–4901CrossRef Mukainakano Y, Yoshida K, Kado S et al (2008) Catalytic performance and characterization of Pt–Ni bimetallic catalysts for oxidative steam reforming of methane. Chem Eng Sci 63:4891–4901CrossRef
43.
Zurück zum Zitat Mukainakano Y, Yoshida K, Okumura K et al (2008) Catalytic performance and QXAFS analysis of Ni catalysts modified with Pd for oxidative steam reforming of methane. Catal Today 132:101–108CrossRef Mukainakano Y, Yoshida K, Okumura K et al (2008) Catalytic performance and QXAFS analysis of Ni catalysts modified with Pd for oxidative steam reforming of methane. Catal Today 132:101–108CrossRef
44.
Zurück zum Zitat Mukainakano Y, Li B, Kado S et al (2007) Surface modification of Ni catalysts with trace Pd and Rh for oxidative steam reforming of methane. Appl Catal A 318:252–264CrossRef Mukainakano Y, Li B, Kado S et al (2007) Surface modification of Ni catalysts with trace Pd and Rh for oxidative steam reforming of methane. Appl Catal A 318:252–264CrossRef
45.
Zurück zum Zitat Yoshida K, Okumura K, Miyao T et al (2008) Oxidative steam reforming of methane over Ni/α-Al2O3 modified with trace Pd. Appl Catal A 351:217–225CrossRef Yoshida K, Okumura K, Miyao T et al (2008) Oxidative steam reforming of methane over Ni/α-Al2O3 modified with trace Pd. Appl Catal A 351:217–225CrossRef
46.
Zurück zum Zitat Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalyst. Catal Today 41:1–13CrossRef Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalyst. Catal Today 41:1–13CrossRef
47.
Zurück zum Zitat Condon JB (2006) Surface area and porosity determinations by physisorption. Measurements and theory. Elsevier, Amsterdam, pp 1–297CrossRef Condon JB (2006) Surface area and porosity determinations by physisorption. Measurements and theory. Elsevier, Amsterdam, pp 1–297CrossRef
48.
Zurück zum Zitat Danilenko VM, Velikanova TY, Mazhuga TG et al (1999) Thermodynamic simulation of the Ni—Ru binary-system phase diagram. Powder Metall Met Ceram 38:254–260CrossRef Danilenko VM, Velikanova TY, Mazhuga TG et al (1999) Thermodynamic simulation of the Ni—Ru binary-system phase diagram. Powder Metall Met Ceram 38:254–260CrossRef
49.
Zurück zum Zitat Shiraga M, Li D, Atake I et al (2007) Partial oxidation of propane to synthesis gas over noble metals-promoted Ni/Mg(Al)O catalysts—high activity of Ru–Ni/Mg(Al)O catalyst. Appl Catal A 318:143–154CrossRef Shiraga M, Li D, Atake I et al (2007) Partial oxidation of propane to synthesis gas over noble metals-promoted Ni/Mg(Al)O catalysts—high activity of Ru–Ni/Mg(Al)O catalyst. Appl Catal A 318:143–154CrossRef
50.
Zurück zum Zitat Rynkowski JM, Paryjczak T, Lenik M (1995) Characterization of alumina supported Ni Ru systems. Appl Catal A 126:257–271CrossRef Rynkowski JM, Paryjczak T, Lenik M (1995) Characterization of alumina supported Ni Ru systems. Appl Catal A 126:257–271CrossRef
51.
Zurück zum Zitat Óhoro MP, Frisillo AL, White WB (1973) Lattice vibrations of MgAl2O4 spinel. J Phys Chem Solids 34:23–28CrossRef Óhoro MP, Frisillo AL, White WB (1973) Lattice vibrations of MgAl2O4 spinel. J Phys Chem Solids 34:23–28CrossRef
52.
Zurück zum Zitat Minh NV, Yang I-S (2004) A Raman study of cation-disorder transition temperature of natural MgAl2O4 spinel. In: The 2nd International Conference on Advanced Vibrational Spectroscopy (ICAVS-2), vol. 35, pp 93–96 Minh NV, Yang I-S (2004) A Raman study of cation-disorder transition temperature of natural MgAl2O4 spinel. In: The 2nd International Conference on Advanced Vibrational Spectroscopy (ICAVS-2), vol. 35, pp 93–96
53.
Zurück zum Zitat Yadav SK, Jeevanandam P (2014) Synthesis of NiO–Al2O3 nanocomposites by sol–gel process and their use as catalyst for the oxidation of styrene. J Alloy Compd 610:567–574CrossRef Yadav SK, Jeevanandam P (2014) Synthesis of NiO–Al2O3 nanocomposites by sol–gel process and their use as catalyst for the oxidation of styrene. J Alloy Compd 610:567–574CrossRef
54.
Zurück zum Zitat Wang W, Liu Y, Xu C et al (2002) Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chem Phys Lett 362:119–122CrossRef Wang W, Liu Y, Xu C et al (2002) Synthesis of NiO nanorods by a novel simple precursor thermal decomposition approach. Chem Phys Lett 362:119–122CrossRef
55.
Zurück zum Zitat Zhu G, Xi C, Xu H et al (2012) Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv 2:4236–4241CrossRef Zhu G, Xi C, Xu H et al (2012) Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv 2:4236–4241CrossRef
56.
Zurück zum Zitat Kim MH, Baik JM, Lee SJ et al (2010) Growth direction determination of a single RuO2 nanowire by polarized Raman spectroscopy. Appl Phys Lett 96:213108CrossRef Kim MH, Baik JM, Lee SJ et al (2010) Growth direction determination of a single RuO2 nanowire by polarized Raman spectroscopy. Appl Phys Lett 96:213108CrossRef
57.
Zurück zum Zitat Meng L, Teixeira V, dos Santos MP (2003) Raman spectroscopy analysis of magnetron sputtered RuO2 thin films. Thin Solid Films 442:93–97CrossRef Meng L, Teixeira V, dos Santos MP (2003) Raman spectroscopy analysis of magnetron sputtered RuO2 thin films. Thin Solid Films 442:93–97CrossRef
58.
Zurück zum Zitat Korotcov A, Hsu HP, Huang YS et al (2007) Deposition and characterization of 1D RuO2 nanocrystals by reactive sputtering. J Alloy Compd 442:310–312CrossRef Korotcov A, Hsu HP, Huang YS et al (2007) Deposition and characterization of 1D RuO2 nanocrystals by reactive sputtering. J Alloy Compd 442:310–312CrossRef
59.
Zurück zum Zitat Huang YS, Pollak FH (1982) Raman Spectroscopy of RuO2. Solid State Commun 43:921–924CrossRef Huang YS, Pollak FH (1982) Raman Spectroscopy of RuO2. Solid State Commun 43:921–924CrossRef
60.
Zurück zum Zitat Koopman PGJ, Kieboom APG, van Bekkum H (1981) Characterization of ruthenium catalyst as studied by temperature programmed reduction. J Catal 69:172–179CrossRef Koopman PGJ, Kieboom APG, van Bekkum H (1981) Characterization of ruthenium catalyst as studied by temperature programmed reduction. J Catal 69:172–179CrossRef
61.
Zurück zum Zitat Balint I, Miyazaki A, Aika K-I (2003) Chemical and morphological evolution of supported Ru nanoparticles during oxidative conversion of methane. React Kinet Catal Lett 80:81–87CrossRef Balint I, Miyazaki A, Aika K-I (2003) Chemical and morphological evolution of supported Ru nanoparticles during oxidative conversion of methane. React Kinet Catal Lett 80:81–87CrossRef
62.
Zurück zum Zitat Qiu Y, Chen J, Zhang J (2007) Effects of MgO promoter on properties of Ni/Al2O3 catalysts for partial oxidation of methane to syngas. Front Chem Sci Eng 1:167–171CrossRef Qiu Y, Chen J, Zhang J (2007) Effects of MgO promoter on properties of Ni/Al2O3 catalysts for partial oxidation of methane to syngas. Front Chem Sci Eng 1:167–171CrossRef
63.
Zurück zum Zitat Dieuzeide ML, Iannibelli V, Jobbagy M, Amadeo N (2012) Steam reforming of glycerol over Ni/Mg/γ-Al2O3 catalysts. Effect of calcination temperatures. Int J Hydrogen Energy 37:14926–14930CrossRef Dieuzeide ML, Iannibelli V, Jobbagy M, Amadeo N (2012) Steam reforming of glycerol over Ni/Mg/γ-Al2O3 catalysts. Effect of calcination temperatures. Int J Hydrogen Energy 37:14926–14930CrossRef
64.
Zurück zum Zitat Salehi E, Azad FS, Harding T, Abedi J (2010) Production of hydrogen by steam reforming of bio-oil over Ni/Al2O3 catalysts: effect of addition of promoter and preparation procedure. Fuel Process Technol 92:2203–2210CrossRef Salehi E, Azad FS, Harding T, Abedi J (2010) Production of hydrogen by steam reforming of bio-oil over Ni/Al2O3 catalysts: effect of addition of promoter and preparation procedure. Fuel Process Technol 92:2203–2210CrossRef
65.
Zurück zum Zitat de Sousa FF, de Sousa HSA, Oliveira AC et al (2011) Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts. Int J Hydrogen Energy 37:3201–3212CrossRef de Sousa FF, de Sousa HSA, Oliveira AC et al (2011) Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts. Int J Hydrogen Energy 37:3201–3212CrossRef
66.
Zurück zum Zitat Enger B, Lødeng R, Holmen A (2010) Effects of noble metal promoters on in situ reduced low loading ni catalysts for methane activation. Catal Lett 134:13–23CrossRef Enger B, Lødeng R, Holmen A (2010) Effects of noble metal promoters on in situ reduced low loading ni catalysts for methane activation. Catal Lett 134:13–23CrossRef
67.
Zurück zum Zitat Li C, Brown TC (2001) Carbon oxidation kinetics from evolved carbon oxide analysis during temperature programmed oxidation. Carbon 39:725–732CrossRef Li C, Brown TC (2001) Carbon oxidation kinetics from evolved carbon oxide analysis during temperature programmed oxidation. Carbon 39:725–732CrossRef
68.
Zurück zum Zitat Shincho E, Egawa C, Naito S, Tamaru K (1985) The behaviour of carbon species produced by CO disproportionation on Ru(1, 1, 10) and Ru(001) surfaces. Surf Sci 155:153–164CrossRef Shincho E, Egawa C, Naito S, Tamaru K (1985) The behaviour of carbon species produced by CO disproportionation on Ru(1, 1, 10) and Ru(001) surfaces. Surf Sci 155:153–164CrossRef
69.
Zurück zum Zitat Shincho E, Egawa C, Naito S, Tamaru K (1985) The behaviour of CO adsorbed on Ru(1,1,10) and Ru(001); the dissociation of CO at the step sites of the Ru(1,1,10) surface. Surf Sci 149:1–16CrossRef Shincho E, Egawa C, Naito S, Tamaru K (1985) The behaviour of CO adsorbed on Ru(1,1,10) and Ru(001); the dissociation of CO at the step sites of the Ru(1,1,10) surface. Surf Sci 149:1–16CrossRef
70.
Zurück zum Zitat Freund HJ, Messmer RP (1986) On the bonding and reactivity of CO2 on metal surfaces. Surf Sci 172:1–30CrossRef Freund HJ, Messmer RP (1986) On the bonding and reactivity of CO2 on metal surfaces. Surf Sci 172:1–30CrossRef
71.
Zurück zum Zitat Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370–383CrossRef Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370–383CrossRef
Metadaten
Titel
Ru–Ni Catalyst in the Combined Dry-Steam Reforming of Methane: The Importance in the Metal Order Addition
verfasst von
Andrea Álvarez M
Miguel Ángel Centeno
José Antonio Odriozola
Publikationsdatum
30.07.2015
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 2-4/2016
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-015-0426-5

Weitere Artikel der Ausgabe 2-4/2016

Topics in Catalysis 2-4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.