Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

06.04.2017 | Ausgabe 11/2017

The Journal of Supercomputing 11/2017

Runtime prediction of parallel applications with workload-aware clustering

Zeitschrift:
The Journal of Supercomputing > Ausgabe 11/2017
Autoren:
Ju-Won Park, Eunhye Kim

Abstract

Traditionally, many science fields require great support for a massive workflow, which utilizes multiple cores simultaneously. In order to support such large-scale scientific workflows, high-capacity parallel systems such as supercomputers are widely used. To increase the utilization of these systems, most schedulers use backfilling policy based on user’s estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, an efficient machine learning approach is present to predict the runtime of parallel application. The proposed method is divided into three phases. First is to analyze important feature of the history log data by factor analysis. Second is to carry out clustering for the parallel program based on the important features. Third is to build a prediction models by pattern similarity of parallel program log data and estimate runtime. In the experiments, we use workload logs on parallel systems (i.e., NASA-iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing root-mean-square error with other techniques, experimental results show that the proposed method improves the accuracy up to 69.56%.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2017

The Journal of Supercomputing 11/2017 Zur Ausgabe

Premium Partner

    Bildnachweise