Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Ausgabe 2/2015

Journal of Business and Psychology 2/2015

RWA Web: A Free, Comprehensive, Web-Based, and User-Friendly Tool for Relative Weight Analyses

Zeitschrift:
Journal of Business and Psychology > Ausgabe 2/2015
Autoren:
Scott Tonidandel, James M. LeBreton
Wichtige Hinweise
Editors note from Steven Rogelberg: In 2011, I invited Scott and James to write a Methods Corner piece on relative importance analyses. Their piece was important and impactful. In this editorial, I invited them to follow up on their earlier work by introducing a free tool they designed to enable scholars to easily implement relative weights analyses. I just want to thank Scott and James for this terrific service they provided our discipline.

Abstract

Over the last 15 years, a number of methodological developments have enabled researchers to draw more accurate inferences concerning the relative contribution (i.e., relative importance) among multiple (often correlated) predictor variables in a regression analysis. One such development has been relative weight analysis (RWA). Researchers can use a RWA to decompose the total variance predicted in a regression model (R 2) into weights that accurately reflect the proportional contribution of the various predictor variables. Prior to RWA, researchers were forced to rely on traditional statistics (e.g., correlations; standardized regression weights), which are known to yield faulty or misleading information concerning variable importance (especially when predictor variables are correlated with one another, which is often the case in organizational research). Although there has been a surge of interest in RWA over the last 10 years, integration of this statistical tool into organizational research has been hampered by the lack of a user-friendly statistical package for implementing RWA. Indeed, most popular statistical packages (e.g., SPSS, SAS) have yet to include RWA protocols into their regression modules. The purpose of this paper is to present a new, free, comprehensive, web-based, user-friendly resource, RWA-Web, which may be used by anyone having simple access to the internet. Our paper is structured as a tutorial on using RWA-Web to examine relative importance in the classic multiple regression model, the multivariate multiple regression model, and the logistic regression model. We also illustrate how RWA-Web may be used to conduct null hypothesis significance tests using advanced bootstrapping procedures.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2015

Journal of Business and Psychology 2/2015 Zur Ausgabe

Premium Partner

    Bildnachweise