Skip to main content

2024 | OriginalPaper | Buchkapitel

7. S2GFormer: Exploring Relationship Between Transformer and Graph Convolution for Hyperspectral Image Classification

verfasst von : Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Erschienen in: Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently both graph convolutional neural networks (GCNs) and Transformers have shown promising progress in hyperspectral image (HSI) classification. Transformer-based methods have a great ability to model non-local interactions among spectral and spatial information, whereas GCNs tend to do well in exploiting neighborhood vertex interactions based on their unique aggregation mechanism.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Ding, Z. Zhang, X. Zhao, W. Cai, N. Yang, H. Hu, X. Huang, Y. Cao, W. Cai, Unsupervised self-correlated learning smoothy enhanced locality preserving graph convolution embedding clustering for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2022) Y. Ding, Z. Zhang, X. Zhao, W. Cai, N. Yang, H. Hu, X. Huang, Y. Cao, W. Cai, Unsupervised self-correlated learning smoothy enhanced locality preserving graph convolution embedding clustering for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2022)
2.
Zurück zum Zitat D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(7), 5966–5978 (2020)CrossRef D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot, Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(7), 5966–5978 (2020)CrossRef
3.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022) Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Graph sample and aggregate-attention network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)
4.
Zurück zum Zitat Z. Chen, Z. Lu, H. Gao, Y. Zhang, J. Zhao, D. Hong, B. Zhang, Global to local: a hierarchical detection algorithm for hyperspectral image target detection. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022) Z. Chen, Z. Lu, H. Gao, Y. Zhang, J. Zhao, D. Hong, B. Zhang, Global to local: a hierarchical detection algorithm for hyperspectral image target detection. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2022)
5.
Zurück zum Zitat J.D.M.-W.C. Kenton, L.K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, pp. 4171–4186 J.D.M.-W.C. Kenton, L.K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, pp. 4171–4186
6.
Zurück zum Zitat Z. Zhang, Y. Ding, X. Zhao, L. Siye, N. Yang, Y. Cai, Y. Zhan, Multireceptive field: an adaptive path aggregation graph neural framework for hyperspectral image classification. Exp. Syst. Appl. 45, 119508 (2023)CrossRef Z. Zhang, Y. Ding, X. Zhao, L. Siye, N. Yang, Y. Cai, Y. Zhan, Multireceptive field: an adaptive path aggregation graph neural framework for hyperspectral image classification. Exp. Syst. Appl. 45, 119508 (2023)CrossRef
7.
Zurück zum Zitat Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi, Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRef Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi, Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRef
8.
Zurück zum Zitat L. Mou, P. Ghamisi, X.X. Zhu, Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)CrossRef L. Mou, P. Ghamisi, X.X. Zhu, Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)CrossRef
9.
Zurück zum Zitat A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2018)CrossRef A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2018)CrossRef
10.
Zurück zum Zitat D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, J. Chanussot, SpectralFormer: rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. (2021) D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, J. Chanussot, SpectralFormer: rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. (2021)
11.
Zurück zum Zitat L. Sun, G. Zhao, Y. Zheng, Z. Wu, Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)CrossRef L. Sun, G. Zhao, Y. Zheng, Z. Wu, Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)CrossRef
12.
Zurück zum Zitat L. Van der Maaten, G. Hinton. Visualizing data using t-SNE. J. Mach Learn. Res. 9(11) (2008) L. Van der Maaten, G. Hinton. Visualizing data using t-SNE. J. Mach Learn. Res. 9(11) (2008)
Metadaten
Titel
S2GFormer: Exploring Relationship Between Transformer and Graph Convolution for Hyperspectral Image Classification
verfasst von
Yao Ding
Zhili Zhang
Haojie Hu
Fang He
Shuli Cheng
Yijun Zhang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8009-9_7