Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Sample Delivery Techniques for Serial Crystallography

verfasst von : Raymond G. Sierra, Uwe Weierstall, Dominik Oberthuer, Michihiro Sugahara, Eriko Nango, So Iwata, Alke Meents

Erschienen in: X-ray Free Electron Lasers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In serial femtosecond crystallography (SFX), protein microcrystals and nanocrystals are introduced into the focus of an X-ray free electron laser (FEL) beam ideally one-by-one in a serial fashion. The high photon density in each pulse is the double-edged sword that necessitates the serial nature of the experiments. The high photon count focused spatially and temporally leads to a diffraction-before-destruction snapshot, but this single snapshot is not enough for a high-resolution three-dimensional structural reconstruction. To recover the structure, more snapshots are required to sample all of reciprocal space from randomly oriented crystal diffraction, and in practice, some redundancy is necessary in these measurements. This chapter explores the different sample delivery techniques developed over the years to help enable serial crystallography experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
14.
Zurück zum Zitat White, F., & Corfield, I. (2005). Viscous fluid flow (3rd ed.). New York: McGraw-Hill. White, F., & Corfield, I. (2005). Viscous fluid flow (3rd ed.). New York: McGraw-Hill.
26.
Zurück zum Zitat Purcell, E. (1976). Life at low Reynolds number. AIP Conference Proceedings, 45, 3–11. Purcell, E. (1976). Life at low Reynolds number. AIP Conference Proceedings, 45, 3–11.
27.
Zurück zum Zitat Rayleigh, L. (1879). On the capillary phenomena of jets. Proceedings of the Royal Society of London, 29, 71–97.CrossRef Rayleigh, L. (1879). On the capillary phenomena of jets. Proceedings of the Royal Society of London, 29, 71–97.CrossRef
28.
Zurück zum Zitat Frohn, A., & Roth, N. (2000). Dynamics of droplets. Berlin, Germany: Springer Science & Business Media.CrossRef Frohn, A., & Roth, N. (2000). Dynamics of droplets. Berlin, Germany: Springer Science & Business Media.CrossRef
29.
Zurück zum Zitat Gañán-Calvo, A. M. (1998). Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Physical Review Letters, 80(2), 285.CrossRef Gañán-Calvo, A. M. (1998). Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Physical Review Letters, 80(2), 285.CrossRef
30.
Zurück zum Zitat Lomb, L., Steinbrener, J., Bari, S., Beisel, D., Berndt, D., Kieser, C., et al. (2012). An anti-settling sample delivery instrument for serial femtosecond crystallography. Journal of Applied Crystallography, 45(4), 674–678.CrossRef Lomb, L., Steinbrener, J., Bari, S., Beisel, D., Berndt, D., Kieser, C., et al. (2012). An anti-settling sample delivery instrument for serial femtosecond crystallography. Journal of Applied Crystallography, 45(4), 674–678.CrossRef
31.
Zurück zum Zitat Weierstall, U., Spence, J. C. H., & Doak, R. B. (2012). Injector for scattering measurements on fully solvated biospecies. The Review of Scientific Instruments, 83(3), 035108. CrossRefPubMed Weierstall, U., Spence, J. C. H., & Doak, R. B. (2012). Injector for scattering measurements on fully solvated biospecies. The Review of Scientific Instruments, 83(3), 035108. CrossRefPubMed
32.
Zurück zum Zitat Nelson, G., Kirian, R. A., Weierstall, U., Zatsepin, N. A., Faragó, T., Baumbach, T., et al. (2016). Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Optics Express, 24(11), 11515–11530.PubMedPubMedCentralCrossRef Nelson, G., Kirian, R. A., Weierstall, U., Zatsepin, N. A., Faragó, T., Baumbach, T., et al. (2016). Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery. Optics Express, 24(11), 11515–11530.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Wang, D., Weierstall, U., Pollack, L., & Spence, J. (2014). Double-focusing mixing jet for XFEL study of chemical kinetics. Journal of Synchrotron Radiation, 21(6), 1364–1366.PubMedPubMedCentralCrossRef Wang, D., Weierstall, U., Pollack, L., & Spence, J. (2014). Double-focusing mixing jet for XFEL study of chemical kinetics. Journal of Synchrotron Radiation, 21(6), 1364–1366.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Weierstall, U., Doak, R. B., & Spence, J. C. H. (2011). A pump-probe XFEL particle injector for hydrated samples. arXiv preprint arXiv:1105.2104. Weierstall, U., Doak, R. B., & Spence, J. C. H. (2011). A pump-probe XFEL particle injector for hydrated samples. arXiv preprint arXiv:1105.2104.
36.
Zurück zum Zitat Perry, S. L., Guha, S., Pawate, A. S., Bhaskarla, A., Agarwal, V., Nair, S. K., et al. (2013). A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab on a Chip, 13(16), 3183–3187.PubMedPubMedCentralCrossRef Perry, S. L., Guha, S., Pawate, A. S., Bhaskarla, A., Agarwal, V., Nair, S. K., et al. (2013). A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab on a Chip, 13(16), 3183–3187.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Zhu, L., Weierstall, U., Cherezov, V., & Liu, W. (2016). Serial femtosecond crystallography of membrane proteins. In I. Moraes (Ed.), The next generation in membrane protein structure determination (pp. 151–160). Cham, Switzerland: Springer.CrossRef Zhu, L., Weierstall, U., Cherezov, V., & Liu, W. (2016). Serial femtosecond crystallography of membrane proteins. In I. Moraes (Ed.), The next generation in membrane protein structure determination (pp. 151–160). Cham, Switzerland: Springer.CrossRef
40.
Zurück zum Zitat Sugahara, M., Mizohata, E., Nango, E., Suzuki, M., Tanaka, T., Masuda, T., et al. (2015). Grease matrix as a versatile carrier of proteins for serial crystallography. Nature Methods, 12(1), 61–63.CrossRefPubMed Sugahara, M., Mizohata, E., Nango, E., Suzuki, M., Tanaka, T., Masuda, T., et al. (2015). Grease matrix as a versatile carrier of proteins for serial crystallography. Nature Methods, 12(1), 61–63.CrossRefPubMed
41.
Zurück zum Zitat Botha, S., Nass, K., Barends, T. R. M., Kabsch, W., Latz, B., Dworkowski, F., et al. (2015). Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallographica. Section D, Biological Crystallography, 71(2), 387.CrossRefPubMed Botha, S., Nass, K., Barends, T. R. M., Kabsch, W., Latz, B., Dworkowski, F., et al. (2015). Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. Acta Crystallographica. Section D, Biological Crystallography, 71(2), 387.CrossRefPubMed
42.
Zurück zum Zitat Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.PubMedPubMedCentralCrossRef Conrad, C. E., Basu, S., James, D., Wang, D., Schaffer, A., Roy-Chowdhury, S., et al. (2015). A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ, 2(4), 421–430.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 1–6.CrossRef Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 1–6.CrossRef
45.
Zurück zum Zitat Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.PubMedCrossRef Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309.PubMedCrossRef
46.
Zurück zum Zitat Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., et al. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161(4), 833–844.PubMedPubMedCentralCrossRef Zhang, H., Unal, H., Gati, C., Han, G. W., Liu, W., Zatsepin, N. A., et al. (2015). Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell, 161(4), 833–844.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRef Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRef
48.
Zurück zum Zitat Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRef Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 1–9.CrossRef Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 1–9.CrossRef
50.
Zurück zum Zitat Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Science Advances, 2(9), e1600292.PubMedPubMedCentralCrossRef Batyuk, A., Galli, L., Ishchenko, A., Han, G. W., Gati, C., Popov, P. A., et al. (2016). Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Science Advances, 2(9), e1600292.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Fromme, R., Ishchenko, A., Metz, M., Chowdhury, S. R., Basu, S., Boutet, S., et al. (2015). Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ, 2(5), 545–551.PubMedPubMedCentralCrossRef Fromme, R., Ishchenko, A., Metz, M., Chowdhury, S. R., Basu, S., Boutet, S., et al. (2015). Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ, 2(5), 545–551.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat James, D., Wang, D., White, T. A., Zatsepin, N., Nelson, G., Liu, H., et al. (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2(2), 168–176.PubMedPubMedCentralCrossRef James, D., Wang, D., White, T. A., Zatsepin, N., Nelson, G., Liu, H., et al. (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2(2), 168–176.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Mitzner, R., Rehanek, J., Kern, J., Gul, S., Hattne, J., Taguchi, T., et al. (2013). L-edge X-ray absorption spectroscopy of dilute systems relevant to metalloproteins using an X-ray free-electron laser. Journal of Physical Chemistry Letters, 4, 3641–3647. https://doi.org/10.1021/jz401837f.CrossRef Mitzner, R., Rehanek, J., Kern, J., Gul, S., Hattne, J., Taguchi, T., et al. (2013). L-edge X-ray absorption spectroscopy of dilute systems relevant to metalloproteins using an X-ray free-electron laser. Journal of Physical Chemistry Letters, 4, 3641–3647. https://​doi.​org/​10.​1021/​jz401837f.CrossRef
77.
Zurück zum Zitat Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., et al. (2013). Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science, 339, 227–230.CrossRefPubMed Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., et al. (2013). Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science, 339, 227–230.CrossRefPubMed
78.
Zurück zum Zitat Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4, 641–647.CrossRef Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4, 641–647.CrossRef
79.
Zurück zum Zitat Beyerlein, K. R., Adriano, L., Heymann, M., Kirian, R., Knoška, J., Wilde, F., et al. (2015). Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. The Review of Scientific Instruments, 86, 125104.PubMedCrossRef Beyerlein, K. R., Adriano, L., Heymann, M., Kirian, R., Knoška, J., Wilde, F., et al. (2015). Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery. The Review of Scientific Instruments, 86, 125104.PubMedCrossRef
80.
Zurück zum Zitat Barends, T. R., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350, 445–450.CrossRefPubMed Barends, T. R., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350, 445–450.CrossRefPubMed
81.
Zurück zum Zitat Coquelle, N., Sliwa, M., Woodhouse, J., Schirò, G., Adam, V., Aquila, A., et al. (2018). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31–37.CrossRefPubMed Coquelle, N., Sliwa, M., Woodhouse, J., Schirò, G., Adam, V., Aquila, A., et al. (2018). Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 10, 31–37.CrossRefPubMed
82.
Zurück zum Zitat Pande, K., Hutchison, C. D., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352, 725–729.PubMedPubMedCentralCrossRef Pande, K., Hutchison, C. D., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352, 725–729.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346, 1242–1246.PubMedPubMedCentralCrossRef Tenboer, J., Basu, S., Zatsepin, N., Pande, K., Milathianaki, D., Frank, M., et al. (2014). Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science, 346, 1242–1246.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Kupitz, C., Olmos Jr., J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.CrossRefPubMed Kupitz, C., Olmos Jr., J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.CrossRefPubMed
85.
Zurück zum Zitat Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541, 242–246.CrossRefPubMed Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541, 242–246.CrossRefPubMed
86.
Zurück zum Zitat Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A., & Flores-Mosquera, M. (2007). Focusing capillary jets close to the continuum limit. Nature Physics, 3, 737–742.CrossRef Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A., & Flores-Mosquera, M. (2007). Focusing capillary jets close to the continuum limit. Nature Physics, 3, 737–742.CrossRef
87.
Zurück zum Zitat Acero, A. J., Ferrera, C., Montanero, J. M., & Gañán-Calvo, A. M. (2012). Focusing liquid microjets with nozzles. Journal of Micromechanics and Microengineering, 22, 065011.CrossRef Acero, A. J., Ferrera, C., Montanero, J. M., & Gañán-Calvo, A. M. (2012). Focusing liquid microjets with nozzles. Journal of Micromechanics and Microengineering, 22, 065011.CrossRef
88.
Zurück zum Zitat Montanero, J. M., Rebollo-Munoz, N., Herrada, M. A., & Gañán-Calvo, A. M. (2011). Global stability of the focusing effect of fluid jet flows. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83, 036309.PubMedCrossRef Montanero, J. M., Rebollo-Munoz, N., Herrada, M. A., & Gañán-Calvo, A. M. (2011). Global stability of the focusing effect of fluid jet flows. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83, 036309.PubMedCrossRef
89.
Zurück zum Zitat Vega, E. J., Montanero, J. M., Herrada, M. A., & Gañán-Calvo, A. M. (2010). Global and local instability of flow focusing: The influence of the geometry. Physics of Fluids, 22, 064105.CrossRef Vega, E. J., Montanero, J. M., Herrada, M. A., & Gañán-Calvo, A. M. (2010). Global and local instability of flow focusing: The influence of the geometry. Physics of Fluids, 22, 064105.CrossRef
90.
Zurück zum Zitat Schmidt, M. (2013). Mix and inject: Reaction initiation by diffusion for time-resolved macromolecular crystallography. Advances in Condensed Matter Physics, 2013, 1–10.CrossRef Schmidt, M. (2013). Mix and inject: Reaction initiation by diffusion for time-resolved macromolecular crystallography. Advances in Condensed Matter Physics, 2013, 1–10.CrossRef
91.
Zurück zum Zitat Calvey, G. D., Katz, A. M., Schaffer, C. B., & Pollack, L. (2016). Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Structural Dynamics, 3, 054301.PubMedPubMedCentralCrossRef Calvey, G. D., Katz, A. M., Schaffer, C. B., & Pollack, L. (2016). Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Structural Dynamics, 3, 054301.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Chavas, L. M., Gumprecht, L., & Chapman, H. N. (2015). Possibilities for serial femtosecond crystallography sample delivery at future light sources. Structural Dynamics, 2, 041709.PubMedPubMedCentralCrossRef Chavas, L. M., Gumprecht, L., & Chapman, H. N. (2015). Possibilities for serial femtosecond crystallography sample delivery at future light sources. Structural Dynamics, 2, 041709.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Trebbin, M., Krüger, K., DePonte, D., Roth, S. V., Chapman, H. N., & Förster, S. (2014). Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab on a Chip, 14, 1733–1745.PubMedCrossRef Trebbin, M., Krüger, K., DePonte, D., Roth, S. V., Chapman, H. N., & Förster, S. (2014). Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab on a Chip, 14, 1733–1745.PubMedCrossRef
94.
Zurück zum Zitat Au, A. K., Huynh, W., Horowitz, L. F., & Folch, A. (2016). 3D-printed microfluidics. Angewandte Chemie (International Ed. in English), 55, 3862–3881.CrossRef Au, A. K., Huynh, W., Horowitz, L. F., & Folch, A. (2016). 3D-printed microfluidics. Angewandte Chemie (International Ed. in English), 55, 3862–3881.CrossRef
95.
Zurück zum Zitat Moffat, K. (2014). Time-resolved crystallography and protein design: Signalling photoreceptors and optogenetics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130568.PubMedPubMedCentralCrossRef Moffat, K. (2014). Time-resolved crystallography and protein design: Signalling photoreceptors and optogenetics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130568.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Neutze, R. (2014). Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130318.PubMedPubMedCentralCrossRef Neutze, R. (2014). Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130318.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Neutze, R., & Moffat, K. (2012). Time-resolved structural studies at synchrotrons and X-ray free electron lasers: Opportunities and challenges. Current Opinion in Structural Biology, 22, 651–659.PubMedPubMedCentralCrossRef Neutze, R., & Moffat, K. (2012). Time-resolved structural studies at synchrotrons and X-ray free electron lasers: Opportunities and challenges. Current Opinion in Structural Biology, 22, 651–659.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Schlichting, I., & Goody, R. S. (1997). Triggering methods in crystallographic enzyme kinetics. Methods in Enzymology, 277, 467–490.PubMedCrossRef Schlichting, I., & Goody, R. S. (1997). Triggering methods in crystallographic enzyme kinetics. Methods in Enzymology, 277, 467–490.PubMedCrossRef
99.
Zurück zum Zitat Barends, T., White, T. A., Barty, A., Foucar, L., Messerschmidt, M., Alonso-Mori, R., et al. (2015). Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data. Journal of Synchrotron Radiation, 22, 644.PubMedCrossRef Barends, T., White, T. A., Barty, A., Foucar, L., Messerschmidt, M., Alonso-Mori, R., et al. (2015). Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data. Journal of Synchrotron Radiation, 22, 644.PubMedCrossRef
100.
Zurück zum Zitat Brennich, M. E., Nolting, J. F., Dammann, C., Nöding, B., Bauch, S., & Herrmann, H. (2011). Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering. Lab on a Chip, 11, 708–716.PubMedCrossRef Brennich, M. E., Nolting, J. F., Dammann, C., Nöding, B., Bauch, S., & Herrmann, H. (2011). Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering. Lab on a Chip, 11, 708–716.PubMedCrossRef
101.
Zurück zum Zitat Knight, J., Vishwanath, A., Brody, J., & Austin, R. (1998). Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Physical Review Letters, 80, 3863–3866.CrossRef Knight, J., Vishwanath, A., Brody, J., & Austin, R. (1998). Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Physical Review Letters, 80, 3863–3866.CrossRef
102.
Zurück zum Zitat Park, H. Y., Qiu, X., Rhoades, E., Korlach, J., Kwok, L. W., & Zipfel, W. R. (2006). Achieving uniform mixing in a microfluidic device: Hydrodynamic focusing prior to mixing. Analytical Chemistry, 78, 4465–4473.PubMedCrossRef Park, H. Y., Qiu, X., Rhoades, E., Korlach, J., Kwok, L. W., & Zipfel, W. R. (2006). Achieving uniform mixing in a microfluidic device: Hydrodynamic focusing prior to mixing. Analytical Chemistry, 78, 4465–4473.PubMedCrossRef
103.
Zurück zum Zitat Pollack, L., & Doniach, S. (2009). Time-resolved X-ray scattering and RNA folding. Methods in Enzymology, 469, 253–268.PubMedCrossRef Pollack, L., & Doniach, S. (2009). Time-resolved X-ray scattering and RNA folding. Methods in Enzymology, 469, 253–268.PubMedCrossRef
104.
Zurück zum Zitat Pollack, L., Tate, M. W., Darnton, N. C., Knight, J. B., Gruner, S. M., Eaton, W. A., et al. (1999). Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proceedings of the National Academy of Sciences, 96, 10115–10117.CrossRef Pollack, L., Tate, M. W., Darnton, N. C., Knight, J. B., Gruner, S. M., Eaton, W. A., et al. (1999). Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proceedings of the National Academy of Sciences, 96, 10115–10117.CrossRef
106.
Zurück zum Zitat Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406, 752–757.PubMedCrossRef Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406, 752–757.PubMedCrossRef
107.
Zurück zum Zitat Fukuda, Y., Tse, K. M., Nakane, T., Nakatsu, T., Suzuki, M., Sugahara, M., et al. (2016). Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proceedings of the National Academy of Sciences of the United States of America, 113, 2928–2933.PubMedPubMedCentralCrossRef Fukuda, Y., Tse, K. M., Nakane, T., Nakatsu, T., Suzuki, M., Sugahara, M., et al. (2016). Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proceedings of the National Academy of Sciences of the United States of America, 113, 2928–2933.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein–coupled receptors. Science, 342, 1521–1524.PubMedPubMedCentralCrossRef Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein–coupled receptors. Science, 342, 1521–1524.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Mafuné, F., Miyajima, K., Tono, K., Takeda, Y., Kohno, J. Y., Miyauchi, N., et al. (2016). Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallographica, Section D: Biological Crystallography, 72(Pt 4), 520–523.CrossRef Mafuné, F., Miyajima, K., Tono, K., Takeda, Y., Kohno, J. Y., Miyauchi, N., et al. (2016). Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallographica, Section D: Biological Crystallography, 72(Pt 4), 520–523.CrossRef
110.
Zurück zum Zitat Zhou, Q., Lai, Y., Bacaj, T., Zhao, M., Lyubimov, A. Y., Uervirojnangkoorn, M., et al. (2015). Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature, 525, 62–67.PubMedPubMedCentralCrossRef Zhou, Q., Lai, Y., Bacaj, T., Zhao, M., Lyubimov, A. Y., Uervirojnangkoorn, M., et al. (2015). Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature, 525, 62–67.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513, 261–265.PubMedPubMedCentralCrossRef Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513, 261–265.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Nango, E., Royant, A., Kubo, M., Nakane, T., Wickstrand, C., Kimura, T., et al. (2016). A three dimensional movie of structural changes in bacteriorhodopsin. Science, 354, 1552–1557.CrossRefPubMed Nango, E., Royant, A., Kubo, M., Nakane, T., Wickstrand, C., Kimura, T., et al. (2016). A three dimensional movie of structural changes in bacteriorhodopsin. Science, 354, 1552–1557.CrossRefPubMed
113.
Zurück zum Zitat Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 12314.PubMedPubMedCentralCrossRef Nogly, P., Panneels, V., Nelson, G., Gati, C., Kimura, T., Milne, C., et al. (2016). Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography. Nature Communications, 7, 12314.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., et al. (2017). Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature, 543, 131–135.CrossRefPubMed Suga, M., Akita, F., Sugahara, M., Kubo, M., Nakajima, Y., Nakane, T., et al. (2017). Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature, 543, 131–135.CrossRefPubMed
115.
Zurück zum Zitat Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 24484.PubMedPubMedCentralCrossRef Sugahara, M., Song, C., Suzuki, M., Masuda, T., Inoue, S., Nakane, T., et al. (2016). Oil-free hyaluronic acid matrix for serial femtosecond crystallography. Scientific Reports, 6, 24484.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Sugahara, M., Nakane, T., Masuda, T., Suzuki, M., Inoue, S., Song, C., et al. (2017). Hydroxyethyl cellulose matrix applied to serial crystallography. Scientific Reports, 7, 703.PubMedPubMedCentralCrossRef Sugahara, M., Nakane, T., Masuda, T., Suzuki, M., Inoue, S., Song, C., et al. (2017). Hydroxyethyl cellulose matrix applied to serial crystallography. Scientific Reports, 7, 703.PubMedPubMedCentralCrossRef
117.
118.
Zurück zum Zitat Nakane, T., Song, C., Suzuki, M., Nango, E., Kobayashi, J., Masuda, T., et al. (2015). Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallographica Section D: Structural Biology, 71, 2519–2525.CrossRef Nakane, T., Song, C., Suzuki, M., Nango, E., Kobayashi, J., Masuda, T., et al. (2015). Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallographica Section D: Structural Biology, 71, 2519–2525.CrossRef
119.
Zurück zum Zitat Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.PubMedPubMedCentralCrossRef Yamashita, K., Pan, D., Okuda, T., Sugahara, M., Kodan, A., Yamaguchi, T., et al. (2015). An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Scientific Reports, 5, 14017.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Colletier, J. P., Sliwa, M., Gallat, F. X., Sugahara, M., Guillon, V., Schirò, G., et al. (2016). Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. Journal of Physical Chemistry Letters, 7, 882–887.CrossRef Colletier, J. P., Sliwa, M., Gallat, F. X., Sugahara, M., Guillon, V., Schirò, G., et al. (2016). Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. Journal of Physical Chemistry Letters, 7, 882–887.CrossRef
121.
Zurück zum Zitat Nakane, T., Hanashima, S., Suzuki, M., Saiki, H., Hayashi, T., Kakinouchi, K., et al. (2016). Membrane protein structure determination by SAD, SIR or SIRAS phasing in serial femtosecond crystallography using a novel iododetergent. Proceedings of the National Academy of Sciences of the United States of America, 113, 13039–13044.PubMedPubMedCentralCrossRef Nakane, T., Hanashima, S., Suzuki, M., Saiki, H., Hayashi, T., Kakinouchi, K., et al. (2016). Membrane protein structure determination by SAD, SIR or SIRAS phasing in serial femtosecond crystallography using a novel iododetergent. Proceedings of the National Academy of Sciences of the United States of America, 113, 13039–13044.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Edlund, P., Takala, H., Claesson, E., Henry, L., Dods, R., Lehtivuori, H., et al. (2016). The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography. Scientific Reports, 6, 35279.PubMedPubMedCentralCrossRef Edlund, P., Takala, H., Claesson, E., Henry, L., Dods, R., Lehtivuori, H., et al. (2016). The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography. Scientific Reports, 6, 35279.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Masuda, T., Suzuki, M., Inoue, S., Song, C., Nakane, T., Nango, E., et al. (2017). Atomic resolution structure of serine protease proteinase K at ambient temperature. Scientific Reports, 7, 45604.PubMedPubMedCentralCrossRef Masuda, T., Suzuki, M., Inoue, S., Song, C., Nakane, T., Nango, E., et al. (2017). Atomic resolution structure of serine protease proteinase K at ambient temperature. Scientific Reports, 7, 45604.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Cheng, A., Hummel, B., Qiu, H., & Caffrey, M. (1998). A simple mechanical mixer for small viscous lipid-containing samples. Chemistry and Physics of Lipids, 95, 11–21.CrossRefPubMed Cheng, A., Hummel, B., Qiu, H., & Caffrey, M. (1998). A simple mechanical mixer for small viscous lipid-containing samples. Chemistry and Physics of Lipids, 95, 11–21.CrossRefPubMed
125.
Zurück zum Zitat Barends, T. R. M., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505, 244–247.PubMedCrossRef Barends, T. R. M., Foucar, L., Botha, S., Doak, R. B., Shoeman, R. L., Nass, K., et al. (2014). De novo protein crystal structure determination from X-ray free-electron laser data. Nature, 505, 244–247.PubMedCrossRef
126.
Zurück zum Zitat Hunter, M. S., Yoon, C. H., DeMirci, H., Sierra, R. G., Dao, E. H., Ahmadi, R., et al. (2016). Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nature Communications, 7, 13388.PubMedPubMedCentralCrossRef Hunter, M. S., Yoon, C. H., DeMirci, H., Sierra, R. G., Dao, E. H., Ahmadi, R., et al. (2016). Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser. Nature Communications, 7, 13388.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Nass, K., Meinhart, A., Barends, T. R., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3, 180–191.PubMedPubMedCentralCrossRef Nass, K., Meinhart, A., Barends, T. R., Foucar, L., Gorel, A., Aquila, A., et al. (2016). Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ, 3, 180–191.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Thorn, A., & Sheldrick, G. M. (2011). ANODE: Anomalous and heavy-atom density calculation. Journal of Applied Crystallography, 44(6), 1285–1287.PubMedPubMedCentralCrossRef Thorn, A., & Sheldrick, G. M. (2011). ANODE: Anomalous and heavy-atom density calculation. Journal of Applied Crystallography, 44(6), 1285–1287.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Stellato, F., Oberthür, D., Liang, M., Bean, R., Gati, C., Yefanov, O., et al. (2014). Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ, 1, 204–212.PubMedPubMedCentralCrossRef Stellato, F., Oberthür, D., Liang, M., Bean, R., Gati, C., Yefanov, O., et al. (2014). Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ, 1, 204–212.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Weierstall, U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130337.PubMedPubMedCentralCrossRef Weierstall, U. (2014). Liquid sample delivery techniques for serial femtosecond crystallography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130337.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Nakane, T., Joti, Y., Tono, K., Yabashi, M., Nango, E., Iwata, S., et al. (2016). Data processing pipeline for serial femtosecond crystallography at SACLA. Journal of Applied Crystallography, 49, 1035–1041.PubMedPubMedCentralCrossRef Nakane, T., Joti, Y., Tono, K., Yabashi, M., Nango, E., Iwata, S., et al. (2016). Data processing pipeline for serial femtosecond crystallography at SACLA. Journal of Applied Crystallography, 49, 1035–1041.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Fuller, F. D., Gul, S., Chatterjee, R., Burgie, E. S., Young, I. D., Lebrette, H., et al. (2017). Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 14(4), 443–449.PubMedPubMedCentralCrossRef Fuller, F. D., Gul, S., Chatterjee, R., Burgie, E. S., Young, I. D., Lebrette, H., et al. (2017). Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 14(4), 443–449.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Hunter, M. S., Segelke, B., Messerschmidt, M., Williams, G. J., Zatsepin, N. A., Barty, A., et al. (2014). Fixed-target protein serial microcrystallography with an x-ray free electron laser. Scientific Reports, 4, 6026.PubMedPubMedCentralCrossRef Hunter, M. S., Segelke, B., Messerschmidt, M., Williams, G. J., Zatsepin, N. A., Barty, A., et al. (2014). Fixed-target protein serial microcrystallography with an x-ray free electron laser. Scientific Reports, 4, 6026.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., et al. (2014). Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nature Communications, 5, 3052.PubMedCrossRef Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., et al. (2014). Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nature Communications, 5, 3052.PubMedCrossRef
138.
Zurück zum Zitat Murray, T. D., Lyubimov, A. Y., Ogata, C. M., Vo, H., Uervirojnangkoorn, M., Brunger, A. T., et al. (2015). A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallographica Section D: Biological Crystallography, 71, 1987–1997.CrossRefPubMedCentral Murray, T. D., Lyubimov, A. Y., Ogata, C. M., Vo, H., Uervirojnangkoorn, M., Brunger, A. T., et al. (2015). A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallographica Section D: Biological Crystallography, 71, 1987–1997.CrossRefPubMedCentral
139.
Zurück zum Zitat Cohen, A. E., Soltis, S. M., González, A., Aguila, L., Alonso-Mori, R., Barnes, C. O., et al. (2014). Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 111, 17122–17127.PubMedPubMedCentralCrossRef Cohen, A. E., Soltis, S. M., González, A., Aguila, L., Alonso-Mori, R., Barnes, C. O., et al. (2014). Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 111, 17122–17127.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Roedig, P., Vartiainen, I., Duman, R., Panneerselvam, S., Stübe, N., Lorbeer, O., et al. (2015). A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Scientific Reports, 5, 10451.PubMedPubMedCentralCrossRef Roedig, P., Vartiainen, I., Duman, R., Panneerselvam, S., Stübe, N., Lorbeer, O., et al. (2015). A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Scientific Reports, 5, 10451.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Zarrine-Afsar, A., Barends, T. R. M., Müller, C., Fuchs, M. R., Lomb, L., Schlichting, I., et al. (2012). Crystallography on a chip. Acta Crystallographica Section D: Biological Crystallography, 68, 321–323.CrossRef Zarrine-Afsar, A., Barends, T. R. M., Müller, C., Fuchs, M. R., Lomb, L., Schlichting, I., et al. (2012). Crystallography on a chip. Acta Crystallographica Section D: Biological Crystallography, 68, 321–323.CrossRef
142.
Zurück zum Zitat Mueller, C., Marx, A., Epp, S. W., Zhong, Y., Kuo, A., Balo, A. R., et al. (2015). Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Structural Dynamics, 2, 054302. PubMedPubMedCentralCrossRef Mueller, C., Marx, A., Epp, S. W., Zhong, Y., Kuo, A., Balo, A. R., et al. (2015). Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography. Structural Dynamics, 2, 054302. PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Feld, G. K., Heymann, M., Benner, W. H., Pardini, T., Tsai, C. J., Boutet, S., et al. (2015). Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography. Journal of Applied Crystallography, 48(4), 1072–1079.CrossRef Feld, G. K., Heymann, M., Benner, W. H., Pardini, T., Tsai, C. J., Boutet, S., et al. (2015). Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography. Journal of Applied Crystallography, 48(4), 1072–1079.CrossRef
144.
Zurück zum Zitat Lyubimov, A. Y., Murray, T. D., Koehl, A., Araci, I. E., Uervirojnangkoorn, M., Zeldin, O. B., et al. (2015). Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallographica Section D, 71(4), 928–940.CrossRef Lyubimov, A. Y., Murray, T. D., Koehl, A., Araci, I. E., Uervirojnangkoorn, M., Zeldin, O. B., et al. (2015). Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Acta Crystallographica Section D, 71(4), 928–940.CrossRef
146.
Zurück zum Zitat Opara, N., Martiel, I., Arnold, S. A., Braun, T., Stahlberg, H., Makita, M., et al. (2017). Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers. Journal of Applied Crystallography, 50, 909–918.CrossRef Opara, N., Martiel, I., Arnold, S. A., Braun, T., Stahlberg, H., Makita, M., et al. (2017). Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers. Journal of Applied Crystallography, 50, 909–918.CrossRef
148.
Zurück zum Zitat Owen, R. L., Rudiño-Piñera, E., & Garman, E. F. (2006). Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci USA, 103(13), 4912–4917.PubMedCrossRefPubMedCentral Owen, R. L., Rudiño-Piñera, E., & Garman, E. F. (2006). Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc Natl Acad Sci USA, 103(13), 4912–4917.PubMedCrossRefPubMedCentral
153.
Zurück zum Zitat Kiefersauer, R., Than, M. E., Dobbek, H., Gremer, L., Melero, M., Strobl, S., et al. (2000). Journal of Applied Crystallography, 33, 1223–1230.CrossRef Kiefersauer, R., Than, M. E., Dobbek, H., Gremer, L., Melero, M., Strobl, S., et al. (2000). Journal of Applied Crystallography, 33, 1223–1230.CrossRef
154.
Zurück zum Zitat Sanchez Weatherby, J., Bowler, M. W., Huet, J., Gobbo, A., Felisaz, F., Lavault, B., et al. (2009). Improving diffraction by humidity control: A novel device compatible with X-ray beamlines. Acta Crystallographica. Section D, Biological Crystallography, 65, 1237–1246.PubMedCrossRef Sanchez Weatherby, J., Bowler, M. W., Huet, J., Gobbo, A., Felisaz, F., Lavault, B., et al. (2009). Improving diffraction by humidity control: A novel device compatible with X-ray beamlines. Acta Crystallographica. Section D, Biological Crystallography, 65, 1237–1246.PubMedCrossRef
155.
Zurück zum Zitat Roedig, P., Duman, R., Sanchez-Weatherby, J., Vartiainen, I., Burkhardt, A., Warmer, M., et al. (2016). Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. Journal of Applied Crystallography, 49, 968–975.PubMedPubMedCentralCrossRef Roedig, P., Duman, R., Sanchez-Weatherby, J., Vartiainen, I., Burkhardt, A., Warmer, M., et al. (2016). Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. Journal of Applied Crystallography, 49, 968–975.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Sherrell, D. A., Foster, A. J., Hudson, L., Nutter, B., O’Hea, J., Nelson, S., et al. (2015). A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources. Journal of Synchrotron Radiation, 22, 1372–1378.PubMedPubMedCentralCrossRef Sherrell, D. A., Foster, A. J., Hudson, L., Nutter, B., O’Hea, J., Nelson, S., et al. (2015). A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources. Journal of Synchrotron Radiation, 22, 1372–1378.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Owen, R. L., Axford, D., Sherrell, D. A., Kuo, A., Ernst, O. P., Schulz, E. C., et al. (2017). Low-dose fixed-target serial synchrotron crystallography. Acta Crystallographica Section D: Biological Crystallography, 73, 373–378.CrossRef Owen, R. L., Axford, D., Sherrell, D. A., Kuo, A., Ernst, O. P., Schulz, E. C., et al. (2017). Low-dose fixed-target serial synchrotron crystallography. Acta Crystallographica Section D: Biological Crystallography, 73, 373–378.CrossRef
161.
Zurück zum Zitat Wiedorn, M. O., Awel, S., Morgan, A. J., Ayyer, K., Gevorkov, Y., Fleckenstein, H., et al. (2018). Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ, 5(5), 574–584.PubMedPubMedCentralCrossRef Wiedorn, M. O., Awel, S., Morgan, A. J., Ayyer, K., Gevorkov, Y., Fleckenstein, H., et al. (2018). Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ, 5(5), 574–584.PubMedPubMedCentralCrossRef
Metadaten
Titel
Sample Delivery Techniques for Serial Crystallography
verfasst von
Raymond G. Sierra
Uwe Weierstall
Dominik Oberthuer
Michihiro Sugahara
Eriko Nango
So Iwata
Alke Meents
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00551-1_5

Neuer Inhalt