Skip to main content

2015 | OriginalPaper | Buchkapitel

Sampling Methods

verfasst von : Martin Hanke-Bourgeois, Andreas Kirsch

Erschienen in: Handbook of Mathematical Methods in Imaging

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The topic of this chapter is devoted to shape identification problems, i.e., problems where the shape of an object has to be determined from indirect measurements. In contrast to iterative methods where a sequence of forward problems has to be computed the sampling methods avoid the (usually expansive) computation of the forward problems. Instead, a class of test objects (e.g., points) are chosen and a binary criterium is constructed which depends on the measured data only, and which decides whether this test object is inside or outside of the searched for domain. In this chapter, the factorization method is explained for the impedance tomography problem with insulating or conducting inclusions, for scattering theory for time harmonic acoustic plane waves in the presence of a perfectly sound–soft obstacle, and for electromagnetic scattering by an inhomogeneous conducting medium. Brief descriptions of related sampling methods, such as the linear sampling method, MUSIC, the singular sources method, and the probe method complement this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alves, C., Ammari, H.: Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium. SIAM J. Appl. Math. 62, 94–106 (2002)CrossRefMathSciNet Alves, C., Ammari, H.: Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium. SIAM J. Appl. Math. 62, 94–106 (2002)CrossRefMathSciNet
2.
Zurück zum Zitat Ammari, H., Griesmaier, R., Hanke, M.: Identification of small inhomogeneities: asymptotic factorization. Math. Comput. 76, 1425–1448 (2007)CrossRefMATHMathSciNet Ammari, H., Griesmaier, R., Hanke, M.: Identification of small inhomogeneities: asymptotic factorization. Math. Comput. 76, 1425–1448 (2007)CrossRefMATHMathSciNet
3.
Zurück zum Zitat Ammari, H., Iakovleva, E., Lesselier, D.: Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency. SIAM J. Sci. Comput. 27, 130–158 (2005)CrossRefMATHMathSciNet Ammari, H., Iakovleva, E., Lesselier, D.: Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency. SIAM J. Sci. Comput. 27, 130–158 (2005)CrossRefMATHMathSciNet
4.
Zurück zum Zitat Ammari, H., Iakovleva, E., Moskow, S.: Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency. SIAM J. Math. Anal. 34, 882–900 (2003)CrossRefMATHMathSciNet Ammari, H., Iakovleva, E., Moskow, S.: Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency. SIAM J. Math. Anal. 34, 882–900 (2003)CrossRefMATHMathSciNet
5.
Zurück zum Zitat Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, vol. 1846. Springer, New York (2004)CrossRef Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements. Lecture Notes in Mathematics, vol. 1846. Springer, New York (2004)CrossRef
6.
Zurück zum Zitat Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory. Springer, New York (2007)MATH Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory. Springer, New York (2007)MATH
7.
Zurück zum Zitat Ammari, H., Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations. J. Math. Pures Appl. 80, 769–814 (2001)CrossRefMATHMathSciNet Ammari, H., Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations. J. Math. Pures Appl. 80, 769–814 (2001)CrossRefMATHMathSciNet
8.
11.
Zurück zum Zitat Arens, T., Grinberg, N.I.: A complete factorization method for scattering by periodic structures. Computing 75, 111–132 (2005)CrossRefMATHMathSciNet Arens, T., Grinberg, N.I.: A complete factorization method for scattering by periodic structures. Computing 75, 111–132 (2005)CrossRefMATHMathSciNet
12.
Zurück zum Zitat Arens, T., Kirsch, A.: The factorization method in inverse scattering from periodic structures. Inverse Probl. 19, 1195–1211 (2003)CrossRefMATHMathSciNet Arens, T., Kirsch, A.: The factorization method in inverse scattering from periodic structures. Inverse Probl. 19, 1195–1211 (2003)CrossRefMATHMathSciNet
14.
Zurück zum Zitat Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)CrossRefMATH Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)CrossRefMATH
15.
Zurück zum Zitat Azzouz, M., Oesterlein, C., Hanke, M., Schilcher, K.: The factorization method for electrical impedance tomography data from a new planar device. Int. J. Biomed. Imaging Article ID 83016, 7p. (2007). doi:10.1155/2007/83016 Azzouz, M., Oesterlein, C., Hanke, M., Schilcher, K.: The factorization method for electrical impedance tomography data from a new planar device. Int. J. Biomed. Imaging Article ID 83016, 7p. (2007). doi:10.1155/2007/83016
16.
Zurück zum Zitat Beretta, E., Vessella, S.: Stable determination of boundaries from Cauchy data. SIAM J. Math. Anal. 30, 220–232 (1998)CrossRefMathSciNet Beretta, E., Vessella, S.: Stable determination of boundaries from Cauchy data. SIAM J. Math. Anal. 30, 220–232 (1998)CrossRefMathSciNet
17.
Zurück zum Zitat Van Berkel, C., Lionheart, W.R.B.: Reconstruction of a grounded object in an electrostatic halfspace with an indicator function. Inverse Probl. Sci. Eng. 21, 585–600 (2007)CrossRef Van Berkel, C., Lionheart, W.R.B.: Reconstruction of a grounded object in an electrostatic halfspace with an indicator function. Inverse Probl. Sci. Eng. 21, 585–600 (2007)CrossRef
19.
Zurück zum Zitat Bourgeois, L., Lunéville, E.: The linear sampling method in a waveguide: a modal formulation. Inverse Probl. 24, 015018 (2008)CrossRef Bourgeois, L., Lunéville, E.: The linear sampling method in a waveguide: a modal formulation. Inverse Probl. 24, 015018 (2008)CrossRef
20.
Zurück zum Zitat Brignone, M., Bozza, G., Aramini, R., Pastorino, M., Piana, M.: A fully no-sampling formulation of the linear sampling method for three-dimensional inverse electromagnetic scattering problems. Inverse Probl. 25, 015014 (2009)CrossRefMathSciNet Brignone, M., Bozza, G., Aramini, R., Pastorino, M., Piana, M.: A fully no-sampling formulation of the linear sampling method for three-dimensional inverse electromagnetic scattering problems. Inverse Probl. 25, 015014 (2009)CrossRefMathSciNet
21.
Zurück zum Zitat Brühl, M.: Gebietserkennung in der elektrischen Impedanztomographie. PhD thesis, Universität Karlsruhe, Karlsruhe (1999) Brühl, M.: Gebietserkennung in der elektrischen Impedanztomographie. PhD thesis, Universität Karlsruhe, Karlsruhe (1999)
22.
Zurück zum Zitat Brühl, M.: Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32, 1327–1341 (2001)CrossRefMATHMathSciNet Brühl, M.: Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32, 1327–1341 (2001)CrossRefMATHMathSciNet
23.
Zurück zum Zitat Brühl, M., Hanke, M., Pidcock, M.: Crack detection using electrostatic measurements. Math. Model. Numer. Anal. 35, 595–605 (2001)CrossRefMATH Brühl, M., Hanke, M., Pidcock, M.: Crack detection using electrostatic measurements. Math. Model. Numer. Anal. 35, 595–605 (2001)CrossRefMATH
24.
Zurück zum Zitat Brühl, M., Hanke, M., Vogelius, M.: A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93, 635–654 (2003)CrossRefMATHMathSciNet Brühl, M., Hanke, M., Vogelius, M.: A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93, 635–654 (2003)CrossRefMATHMathSciNet
25.
Zurück zum Zitat Burger, M., Osher, S.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16, 263–301 (2005)CrossRefMATHMathSciNet Burger, M., Osher, S.: A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16, 263–301 (2005)CrossRefMATHMathSciNet
27.
Zurück zum Zitat Cakoni, F., Colton, D., Haddar, H.: The linear sampling method for anisotropic media. J. Comput. Appl. Math. 146, 285–299 (2002)CrossRefMATHMathSciNet Cakoni, F., Colton, D., Haddar, H.: The linear sampling method for anisotropic media. J. Comput. Appl. Math. 146, 285–299 (2002)CrossRefMATHMathSciNet
28.
Zurück zum Zitat Cedio-Fengya, D., Moskow, S., Vogelius, M.S.: Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Probl. 14, 553–595 (1998)MATHMathSciNet Cedio-Fengya, D., Moskow, S., Vogelius, M.S.: Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Probl. 14, 553–595 (1998)MATHMathSciNet
29.
Zurück zum Zitat Charalambopoulos, A., Gintides, D., Kiriaki, K.: The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Probl. 18, 547–558 (2002)CrossRefMATHMathSciNet Charalambopoulos, A., Gintides, D., Kiriaki, K.: The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Probl. 18, 547–558 (2002)CrossRefMATHMathSciNet
30.
Zurück zum Zitat Charalambopoulos, A., Gintides, D., Kiriaki, K., Kirsch, A.: The factorization method for an acoustic wave guide. In: 7th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, Nymphaio, Greece. World Scientific, Singapore, pp 120–127 (2006)CrossRef Charalambopoulos, A., Gintides, D., Kiriaki, K., Kirsch, A.: The factorization method for an acoustic wave guide. In: 7th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, Nymphaio, Greece. World Scientific, Singapore, pp 120–127 (2006)CrossRef
31.
Zurück zum Zitat Charalambopoulus, A., Kirsch, A., Anagnostopoulus, K.A., Gintides, D., Kiriaki, K.: The factorization method in inverse elastic scattering from penetrable bodies. Inverse Probl. 23, 27–51 (2007)CrossRef Charalambopoulus, A., Kirsch, A., Anagnostopoulus, K.A., Gintides, D., Kiriaki, K.: The factorization method in inverse elastic scattering from penetrable bodies. Inverse Probl. 23, 27–51 (2007)CrossRef
33.
Zurück zum Zitat Collino, F., Fares, M., Haddar, H.: Numerical and analytical study of the linear sampling method in electromagnetic inverse scattering problems. Inverse Probl. 19, 1279–1298 (2003)CrossRefMATHMathSciNet Collino, F., Fares, M., Haddar, H.: Numerical and analytical study of the linear sampling method in electromagnetic inverse scattering problems. Inverse Probl. 19, 1279–1298 (2003)CrossRefMATHMathSciNet
34.
Zurück zum Zitat Colton, D., Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24, 719–731 (2002)CrossRefMATHMathSciNet Colton, D., Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse scattering problem. SIAM J. Sci. Comput. 24, 719–731 (2002)CrossRefMATHMathSciNet
35.
Zurück zum Zitat Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Probl. 12, 383–393 (1996)CrossRefMATHMathSciNet Colton, D., Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Probl. 12, 383–393 (1996)CrossRefMATHMathSciNet
36.
Zurück zum Zitat Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)CrossRefMATH Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)CrossRefMATH
38.
Zurück zum Zitat Colton, D., Päivärinta, L.: The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch. Ration. Mech. Anal. 119, 59–70 (1992)CrossRefMATH Colton, D., Päivärinta, L.: The uniqueness of a solution to an inverse scattering problem for electromagnetic waves. Arch. Ration. Mech. Anal. 119, 59–70 (1992)CrossRefMATH
39.
Zurück zum Zitat Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)CrossRefMATH Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)CrossRefMATH
40.
Zurück zum Zitat Fata, S.N., Guzina, B.B.: A linear sampling method for near field inverse problems in elastodynamics. Inverse Probl. 20, 713–736 (2004)CrossRefMATH Fata, S.N., Guzina, B.B.: A linear sampling method for near field inverse problems in elastodynamics. Inverse Probl. 20, 713–736 (2004)CrossRefMATH
41.
Zurück zum Zitat Friedman, A., Vogelius, M.S.: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105, 299–326 (1989)CrossRefMATHMathSciNet Friedman, A., Vogelius, M.S.: Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105, 299–326 (1989)CrossRefMATHMathSciNet
42.
Zurück zum Zitat Gebauer, B., Hyvönen, N.: Factorization method and irregular inclusions in electrical impedance tomography. Inverse Probl. 23, 2159–2170 (2007)CrossRefMATH Gebauer, B., Hyvönen, N.: Factorization method and irregular inclusions in electrical impedance tomography. Inverse Probl. 23, 2159–2170 (2007)CrossRefMATH
43.
Zurück zum Zitat Gebauer, B., Hyvönen, N.: Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Probl. Imaging 2, 355–372 (2008)CrossRefMATHMathSciNet Gebauer, B., Hyvönen, N.: Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Probl. Imaging 2, 355–372 (2008)CrossRefMATHMathSciNet
45.
Zurück zum Zitat Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)CrossRefMATH Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)CrossRefMATH
46.
Zurück zum Zitat Griesmaier, R.: An asymptotic factorization method for detecting small objects using electromagnetic scattering. SIAM J. Appl. Math. 68, 1378–1403 (2008)CrossRefMATHMathSciNet Griesmaier, R.: An asymptotic factorization method for detecting small objects using electromagnetic scattering. SIAM J. Appl. Math. 68, 1378–1403 (2008)CrossRefMATHMathSciNet
47.
Zurück zum Zitat Griesmaier, R.: Reconstruction of thin tubular inclusions in three-dimensional domains using electrical impedance tomography. SIAM J. Imaging Sci. 3, 340–362 (2010)CrossRefMATHMathSciNet Griesmaier, R.: Reconstruction of thin tubular inclusions in three-dimensional domains using electrical impedance tomography. SIAM J. Imaging Sci. 3, 340–362 (2010)CrossRefMATHMathSciNet
49.
Zurück zum Zitat Grinberg, N.: Obstacle visualization via the factorization method for the mixed boundary value problem. Inverse Probl. 18, 1687–1704 (2002)CrossRefMATHMathSciNet Grinberg, N.: Obstacle visualization via the factorization method for the mixed boundary value problem. Inverse Probl. 18, 1687–1704 (2002)CrossRefMATHMathSciNet
50.
Zurück zum Zitat Guzina, B.B., Bonnet, M.: Topological derivative for the inverse scattering of elastic waves. Q. J. Mech. Appl. Math. 57, 161–179 (2004)CrossRefMATHMathSciNet Guzina, B.B., Bonnet, M.: Topological derivative for the inverse scattering of elastic waves. Q. J. Mech. Appl. Math. 57, 161–179 (2004)CrossRefMATHMathSciNet
51.
Zurück zum Zitat Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Probl. 18, 891–906 (2002)CrossRefMATHMathSciNet Haddar, H., Monk, P.: The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Probl. 18, 891–906 (2002)CrossRefMATHMathSciNet
52.
Zurück zum Zitat Hähner, P.: An inverse problem in electrostatics. Inverse Probl. 15, 961–975 (1999)CrossRefMATH Hähner, P.: An inverse problem in electrostatics. Inverse Probl. 15, 961–975 (1999)CrossRefMATH
54.
Zurück zum Zitat Hanke, M., Brühl, M.: Recent progress in electrical impedance tomography. Inverse Probl. 19, S65–S90 (2003)CrossRefMATH Hanke, M., Brühl, M.: Recent progress in electrical impedance tomography. Inverse Probl. 19, S65–S90 (2003)CrossRefMATH
55.
Zurück zum Zitat Hanke, M., Schappel, B.: The factorization method for electrical impedance tomography in the half space. SIAM J. Appl. Math. 68, 907–924 (2008)CrossRefMATHMathSciNet Hanke, M., Schappel, B.: The factorization method for electrical impedance tomography in the half space. SIAM J. Appl. Math. 68, 907–924 (2008)CrossRefMATHMathSciNet
56.
Zurück zum Zitat Harrach, B., Seo, J.K.: Detecting inclusions in electrical impedance tomography without reference measurements. SIAM J. Appl. Math. 69, 1662–1681 (2009)CrossRefMATHMathSciNet Harrach, B., Seo, J.K.: Detecting inclusions in electrical impedance tomography without reference measurements. SIAM J. Appl. Math. 69, 1662–1681 (2009)CrossRefMATHMathSciNet
58.
59.
Zurück zum Zitat Hyvönen, N.: Characterizing inclusions in optical tomography. Inverse Probl. 20, 737–751 (2004)CrossRefMATH Hyvönen, N.: Characterizing inclusions in optical tomography. Inverse Probl. 20, 737–751 (2004)CrossRefMATH
60.
Zurück zum Zitat Hyvönen, N.: Approximating idealized boundary data of electric impedance tomography by electrode measurements. Math. Models Methods Appl. Sci. 19, 1185–1202 (2009)CrossRefMATHMathSciNet Hyvönen, N.: Approximating idealized boundary data of electric impedance tomography by electrode measurements. Math. Models Methods Appl. Sci. 19, 1185–1202 (2009)CrossRefMATHMathSciNet
61.
Zurück zum Zitat Ikehata, M.: Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Probl. 14, 949–954 (1998)CrossRefMATHMathSciNet Ikehata, M.: Reconstruction of an obstacle from the scattering amplitude at a fixed frequency. Inverse Probl. 14, 949–954 (1998)CrossRefMATHMathSciNet
62.
Zurück zum Zitat Ikehata, M.: Reconstruction of the shape of the inclusion by boundary measurements. Commun. Part. Diff. Equ. 23, 1459–1474 (1998)CrossRefMATHMathSciNet Ikehata, M.: Reconstruction of the shape of the inclusion by boundary measurements. Commun. Part. Diff. Equ. 23, 1459–1474 (1998)CrossRefMATHMathSciNet
64.
Zurück zum Zitat Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. de Gruyter, Berlin (2008)CrossRefMATH Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. de Gruyter, Berlin (2008)CrossRefMATH
65.
66.
Zurück zum Zitat Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Probl. 14, 1489–1512 (1998)CrossRefMATHMathSciNet Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Probl. 14, 1489–1512 (1998)CrossRefMATHMathSciNet
67.
Zurück zum Zitat Kirsch, A.: Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Probl. 15, 413–429 (1999)CrossRefMATHMathSciNet Kirsch, A.: Factorization of the far field operator for the inhomogeneous medium case and an application in inverse scattering theory. Inverse Probl. 15, 413–429 (1999)CrossRefMATHMathSciNet
69.
Zurück zum Zitat Kirsch, A.: The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Probl. 18, 1025–1040 (2002)CrossRefMATHMathSciNet Kirsch, A.: The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Probl. 18, 1025–1040 (2002)CrossRefMATHMathSciNet
70.
Zurück zum Zitat Kirsch, A.: The factorization method for a class of inverse elliptic problems. Math. Nachr. 278, 258–277 (2004)CrossRefMathSciNet Kirsch, A.: The factorization method for a class of inverse elliptic problems. Math. Nachr. 278, 258–277 (2004)CrossRefMathSciNet
71.
Zurück zum Zitat Kirsch, A.: An integral equation for Maxwell’s equations in a layered medium with an application to the factorization method. J. Int. Equ. Appl. 19, 333–358 (2007)CrossRefMATHMathSciNet Kirsch, A.: An integral equation for Maxwell’s equations in a layered medium with an application to the factorization method. J. Int. Equ. Appl. 19, 333–358 (2007)CrossRefMATHMathSciNet
72.
Zurück zum Zitat Kirsch, A.: An integral equation for the scattering problem for an anisotropic medium and the factorization method. In: 8th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, Lefkada, Greece, pp. 57–70. World Scientific, Singapore, (2007) Kirsch, A.: An integral equation for the scattering problem for an anisotropic medium and the factorization method. In: 8th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, Lefkada, Greece, pp. 57–70. World Scientific, Singapore, (2007)
73.
Zurück zum Zitat Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford Lecture Series in Mathematics and Its Applications, vol. 36. Oxford University Press, Oxford (2008) Kirsch, A., Grinberg, N.: The Factorization Method for Inverse Problems. Oxford Lecture Series in Mathematics and Its Applications, vol. 36. Oxford University Press, Oxford (2008)
74.
75.
Zurück zum Zitat Kress, R., Kühn, L.: Linear sampling methods for inverse boundary value problems in potential theory. Appl. Numer. Math. 43, 161–173 (2002)CrossRefMATHMathSciNet Kress, R., Kühn, L.: Linear sampling methods for inverse boundary value problems in potential theory. Appl. Numer. Math. 43, 161–173 (2002)CrossRefMATHMathSciNet
76.
Zurück zum Zitat Lechleiter, A.: The factorization method is independent of transmission eigenvalues. Inverse Probl. Imaging 3, 123–138 (2009)CrossRefMATHMathSciNet Lechleiter, A.: The factorization method is independent of transmission eigenvalues. Inverse Probl. Imaging 3, 123–138 (2009)CrossRefMATHMathSciNet
77.
Zurück zum Zitat Lechleiter, A., Hyvönen, N., Hakula, H.: The factorization method applied to the complete electrode model of impedance tomography. SIAM J. Appl. Math. 68, 1097–1121 (2008)CrossRefMATHMathSciNet Lechleiter, A., Hyvönen, N., Hakula, H.: The factorization method applied to the complete electrode model of impedance tomography. SIAM J. Appl. Math. 68, 1097–1121 (2008)CrossRefMATHMathSciNet
78.
Zurück zum Zitat Lukaschewitsch, M., Maass, P., Pidcock, M.: Tikhonov regularization for electrical impedance tomography on unbounded domains. Inverse Probl. 19, 585–610 (2003)CrossRefMATHMathSciNet Lukaschewitsch, M., Maass, P., Pidcock, M.: Tikhonov regularization for electrical impedance tomography on unbounded domains. Inverse Probl. 19, 585–610 (2003)CrossRefMATHMathSciNet
79.
Zurück zum Zitat Luke, R., Potthast, R.: The no response test – a sampling method for inverse scattering problems. SIAM J. Appl. Math. 63, 1292–1312 (2003)CrossRefMATHMathSciNet Luke, R., Potthast, R.: The no response test – a sampling method for inverse scattering problems. SIAM J. Appl. Math. 63, 1292–1312 (2003)CrossRefMATHMathSciNet
80.
Zurück zum Zitat McLean, W.: Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge (2000) McLean, W.: Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge (2000)
81.
Zurück zum Zitat Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Science, Oxford (2003)CrossRefMATH Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Science, Oxford (2003)CrossRefMATH
82.
Zurück zum Zitat Nachman, A.I., Päivärinta, L., Teirilä, A.: On imaging obstacles inside inhomogeneous media. J. Funct. Anal. 252, 490–516 (2007)CrossRefMATHMathSciNet Nachman, A.I., Päivärinta, L., Teirilä, A.: On imaging obstacles inside inhomogeneous media. J. Funct. Anal. 252, 490–516 (2007)CrossRefMATHMathSciNet
83.
Zurück zum Zitat Pike, R., Sabatier, P.: Scattering: Scattering and Inverse Scattering in Pure and Applied Science. Academic, New York/London (2002) Pike, R., Sabatier, P.: Scattering: Scattering and Inverse Scattering in Pure and Applied Science. Academic, New York/London (2002)
84.
86.
Zurück zum Zitat Potthast, R.: Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall/CRC, Boca Raton (2001)CrossRefMATH Potthast, R.: Point Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall/CRC, Boca Raton (2001)CrossRefMATH
88.
Zurück zum Zitat Ringrose, J.R.: Compact Non-self-Adjoint Operators. Van Nostrand Reinhold, London (1971)MATH Ringrose, J.R.: Compact Non-self-Adjoint Operators. Van Nostrand Reinhold, London (1971)MATH
89.
Zurück zum Zitat Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer, New York (1992)CrossRefMATH Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer, New York (1992)CrossRefMATH
90.
Zurück zum Zitat Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice-Hall, Englewood Cliffs (1992)MATH Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice-Hall, Englewood Cliffs (1992)MATH
91.
Zurück zum Zitat Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. M2AN 79, 723–748 (2000)MathSciNet Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. M2AN 79, 723–748 (2000)MathSciNet
92.
Zurück zum Zitat Zou, Y., Guo, Z.: A review of electrical impedance techniques for breast cancer detection. Med. Eng. Phys. 25, 79–90 (2003)CrossRef Zou, Y., Guo, Z.: A review of electrical impedance techniques for breast cancer detection. Med. Eng. Phys. 25, 79–90 (2003)CrossRef
Metadaten
Titel
Sampling Methods
verfasst von
Martin Hanke-Bourgeois
Andreas Kirsch
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0790-8_12