Skip to main content

2018 | OriginalPaper | Buchkapitel

9. Sandwich Assays Based on QCM, SPR, Microcantilever, and SERS Techniques for Nucleic Acid Detection

verfasst von : Xiaoxia Hu, Quan Yuan

Erschienen in: Biosensors Based on Sandwich Assays

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Signal transducers which can read the signal toward targets are widely used for nucleic acid assay. Typically, the signal transducers based on quartz crystal microbalance (QCM), surface plasmon resonance (SPR) sensor, microcantilever, and surface-enhanced Raman scattering (SERS) play a significant role in the development of techniques for the detection of nucleic acid. The combination of these techniques with sandwich assay has received extensive attention due to the advantages of sensitivity and specificity. In this chapter, we summarized the recent development of the nucleic acid sandwich assay based on QCM, SPR sensor, microcantilever, and SERS. Additionally, the advantages and disadvantages of these sandwich assays along with the challenges and prospects are also presented, devoting to guide researches to design more of robust sandwich assays for nucleic acid assay.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Henne WA, Doorneweerd DD, Lee J, Low PS, Savran C (2006) Detection of folate binding protein with enhanced sensitivity using a functionalized quartz crystal microbalance sensor. Anal Chem 78:4880–4884CrossRef Henne WA, Doorneweerd DD, Lee J, Low PS, Savran C (2006) Detection of folate binding protein with enhanced sensitivity using a functionalized quartz crystal microbalance sensor. Anal Chem 78:4880–4884CrossRef
2.
Zurück zum Zitat Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84:5898–5904CrossRef Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84:5898–5904CrossRef
3.
Zurück zum Zitat Ebersole RC, Ward MD (1988) Amplified mass immunosorbent-assay with a quartz crystal microbalance. J Am Chem Soc 110:8623–8628CrossRef Ebersole RC, Ward MD (1988) Amplified mass immunosorbent-assay with a quartz crystal microbalance. J Am Chem Soc 110:8623–8628CrossRef
4.
Zurück zum Zitat Zhou XC, O’Shea SJ, Li SFY (2000) Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem Commun 953–954 Zhou XC, O’Shea SJ, Li SFY (2000) Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem Commun 953–954
5.
Zurück zum Zitat Lao RJ, Song SP, Wu HP, Wang LH, Zhang ZZ, He L, Fan CH (2005) Electrochemical interrogation of DNA monolayers on gold surfaces. Anal Chem 77:6475–6480CrossRef Lao RJ, Song SP, Wu HP, Wang LH, Zhang ZZ, He L, Fan CH (2005) Electrochemical interrogation of DNA monolayers on gold surfaces. Anal Chem 77:6475–6480CrossRef
6.
Zurück zum Zitat Mao XL, Yang LJ, Su XL, Li YB (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens Bioelectron 21:1178–1185CrossRef Mao XL, Yang LJ, Su XL, Li YB (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens Bioelectron 21:1178–1185CrossRef
7.
Zurück zum Zitat Rasheed PA, Sandhyarani N (2016) Quartz crystal microbalance genosensor for sequence specific detection of attomolar DNA targets. Anal Chim Acta 905:134–139CrossRef Rasheed PA, Sandhyarani N (2016) Quartz crystal microbalance genosensor for sequence specific detection of attomolar DNA targets. Anal Chim Acta 905:134–139CrossRef
8.
Zurück zum Zitat Sanchez CG, Su Q, Schonherr H, Grininger M, Noll G (2015) Multi-ligand-binding flavoprotein dodecin as a key element for reversible surface modification in nano-biotechnology. ACS Nano 9:3491–3500CrossRef Sanchez CG, Su Q, Schonherr H, Grininger M, Noll G (2015) Multi-ligand-binding flavoprotein dodecin as a key element for reversible surface modification in nano-biotechnology. ACS Nano 9:3491–3500CrossRef
9.
Zurück zum Zitat Zeng SW, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452CrossRef Zeng SW, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452CrossRef
10.
Zurück zum Zitat Ermini ML, Mariani S, Scarano S, Minunni M (2014) Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors. Biosens Bioelectron 61:28–37CrossRef Ermini ML, Mariani S, Scarano S, Minunni M (2014) Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors. Biosens Bioelectron 61:28–37CrossRef
11.
Zurück zum Zitat Sipova H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 773:9–23CrossRef Sipova H, Homola J (2013) Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 773:9–23CrossRef
12.
Zurück zum Zitat He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077CrossRef He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077CrossRef
13.
Zurück zum Zitat Hayashida M, Yamaguchi A, Misawa H (2005) High sensitivity and large dynamic range surface plasmon resonance sensing for DNA hybridization using Au-nanoparticle-attached probe DNA. Jpn J Appl Phys Part 2—Lett Express Lett 44:1544–1546CrossRef Hayashida M, Yamaguchi A, Misawa H (2005) High sensitivity and large dynamic range surface plasmon resonance sensing for DNA hybridization using Au-nanoparticle-attached probe DNA. Jpn J Appl Phys Part 2—Lett Express Lett 44:1544–1546CrossRef
14.
Zurück zum Zitat Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, Zhou FM (2006) Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem 354:220–228CrossRef Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, Zhou FM (2006) Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem 354:220–228CrossRef
15.
Zurück zum Zitat Yang XH, Wang Q, Wang KM, Tan WH, Li HM (2007) Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles. Biosens Bioelectron 22:1106–1110CrossRef Yang XH, Wang Q, Wang KM, Tan WH, Li HM (2007) Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles. Biosens Bioelectron 22:1106–1110CrossRef
16.
Zurück zum Zitat Wark AW, Lee HJ, Qavi AJ, Corn RM (2007) Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal Chem 79:6697–6701CrossRef Wark AW, Lee HJ, Qavi AJ, Corn RM (2007) Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing. Anal Chem 79:6697–6701CrossRef
17.
Zurück zum Zitat D’Agata R, Corradini R, Grasso G, Marchelli R, Spoto G (2008) Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging. ChemBioChem 9:2067–2070CrossRef D’Agata R, Corradini R, Grasso G, Marchelli R, Spoto G (2008) Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging. ChemBioChem 9:2067–2070CrossRef
18.
Zurück zum Zitat Joung HA, Lee NR, Lee SK, Ahn J, Shin YB, Choi HS, Lee CS, Kim S, Kim MG (2008) High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 630:168–173CrossRef Joung HA, Lee NR, Lee SK, Ahn J, Shin YB, Choi HS, Lee CS, Kim S, Kim MG (2008) High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 630:168–173CrossRef
19.
Zurück zum Zitat Moon S, Kim DJ, Kim K, Kim D, Lee H, Lee K, Haam S (2010) Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization. Appl Optics 49:484–491CrossRef Moon S, Kim DJ, Kim K, Kim D, Lee H, Lee K, Haam S (2010) Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization. Appl Optics 49:484–491CrossRef
20.
Zurück zum Zitat D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R (2011) Direct detection of point mutations in nonamplified human genomic DNA. Anal Chem 83:8711–8717CrossRef D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R (2011) Direct detection of point mutations in nonamplified human genomic DNA. Anal Chem 83:8711–8717CrossRef
21.
Zurück zum Zitat Hong X, Hall EAH (2012) Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst 137:4712–4719CrossRef Hong X, Hall EAH (2012) Contribution of gold nanoparticles to the signal amplification in surface plasmon resonance. Analyst 137:4712–4719CrossRef
22.
Zurück zum Zitat Gu Y, Tan YJ, Wang CY, Nie JL, Yu JR, Li YH (2012) A surface plasmon resonance sensor platform coupled with gold nanoparticle probes for unpurified nucleic acids detection. Anal Lett 45:2210–2220CrossRef Gu Y, Tan YJ, Wang CY, Nie JL, Yu JR, Li YH (2012) A surface plasmon resonance sensor platform coupled with gold nanoparticle probes for unpurified nucleic acids detection. Anal Lett 45:2210–2220CrossRef
23.
Zurück zum Zitat Mariani S, Scarano S, Spadavecchia J, Minunni M (2015) A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars. Biosens Bioelectron 74:981–988CrossRef Mariani S, Scarano S, Spadavecchia J, Minunni M (2015) A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars. Biosens Bioelectron 74:981–988CrossRef
24.
Zurück zum Zitat Okumura A, Sato Y, Kyo M, Kawaguchi H (2005) Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Anal Biochem 339:328–337CrossRef Okumura A, Sato Y, Kyo M, Kawaguchi H (2005) Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Anal Biochem 339:328–337CrossRef
25.
Zurück zum Zitat Mousavi MZ, Chen HY, Wu SH, Peng SW, Lee KL, Wei PK, Cheng JY (2013) Magnetic nanoparticle-enhanced SPR on gold nanoslits for ultra-sensitive, label-free detection of nucleic acid biomarkers. Analyst 138:2740–2748CrossRef Mousavi MZ, Chen HY, Wu SH, Peng SW, Lee KL, Wei PK, Cheng JY (2013) Magnetic nanoparticle-enhanced SPR on gold nanoslits for ultra-sensitive, label-free detection of nucleic acid biomarkers. Analyst 138:2740–2748CrossRef
26.
Zurück zum Zitat Mousavi MZ, Chen HY, Lee KL, Lin H, Chen HH, Lin YF, Wong CS, Li HF, Wei PK, Cheng JY (2015) Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip. Analyst 140:4097–4104CrossRef Mousavi MZ, Chen HY, Lee KL, Lin H, Chen HH, Lin YF, Wong CS, Li HF, Wei PK, Cheng JY (2015) Urinary micro-RNA biomarker detection using capped gold nanoslit SPR in a microfluidic chip. Analyst 140:4097–4104CrossRef
27.
Zurück zum Zitat Zhou WJ, Halpern AR, Seefeld TH, Corn RM (2012) Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays. Anal Chem 84:440–445CrossRef Zhou WJ, Halpern AR, Seefeld TH, Corn RM (2012) Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays. Anal Chem 84:440–445CrossRef
28.
Zurück zum Zitat Goodrich TT, Lee HJ, Corn RM (2004) Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids. Anal Chem 76:6173–6178CrossRef Goodrich TT, Lee HJ, Corn RM (2004) Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids. Anal Chem 76:6173–6178CrossRef
29.
Zurück zum Zitat Zeng DM, Wang JX, Yin LJ, Zhang YT, Zhang Y, Zhou FM (2007) Sequence-specific analysis of oligodeoxynucleotides by precipitate-amplified surface plasmon resonance measurements. Front Biosci 12:5117–5123CrossRef Zeng DM, Wang JX, Yin LJ, Zhang YT, Zhang Y, Zhou FM (2007) Sequence-specific analysis of oligodeoxynucleotides by precipitate-amplified surface plasmon resonance measurements. Front Biosci 12:5117–5123CrossRef
30.
Zurück zum Zitat Su XD, Teh HF, Aung KMM, Zong Y, Gao ZQ (2008) Femtomol SPR detection of DNA-PNA hybridization with the assistance of DNA-guided polyaniline deposition. Biosens Bioelectron 23:1715–1720CrossRef Su XD, Teh HF, Aung KMM, Zong Y, Gao ZQ (2008) Femtomol SPR detection of DNA-PNA hybridization with the assistance of DNA-guided polyaniline deposition. Biosens Bioelectron 23:1715–1720CrossRef
31.
Zurück zum Zitat Seefeld TH, Zhou WJ, Corn RM (2011) Rapid microarray detection of DNA and proteins in microliter volumes with surface plasmon resonance imaging measurements. Langmuir 27:6534–6540CrossRef Seefeld TH, Zhou WJ, Corn RM (2011) Rapid microarray detection of DNA and proteins in microliter volumes with surface plasmon resonance imaging measurements. Langmuir 27:6534–6540CrossRef
32.
Zurück zum Zitat Fasoli JB, Corn RM (2015) Surface enzyme chemistries for ultrasensitive microarray biosensing with SPR imaging. Langmuir 31:9527–9536CrossRef Fasoli JB, Corn RM (2015) Surface enzyme chemistries for ultrasensitive microarray biosensing with SPR imaging. Langmuir 31:9527–9536CrossRef
33.
Zurück zum Zitat Li YA, Wark AW, Lee HJ, Corn RM (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78:3158–3164CrossRef Li YA, Wark AW, Lee HJ, Corn RM (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78:3158–3164CrossRef
34.
Zurück zum Zitat Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128:14044–14046CrossRef Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128:14044–14046CrossRef
35.
Zurück zum Zitat Sendroiu IE, Gifford LK, Luptak A, Corn RM (2011) Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. J Am Chem Soc 133:4271–4273CrossRef Sendroiu IE, Gifford LK, Luptak A, Corn RM (2011) Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. J Am Chem Soc 133:4271–4273CrossRef
36.
Zurück zum Zitat Zagorodko O, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, Boukherroub R, Szunerits S (2014) Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces. Anal Chem 86:11211–11216 Zagorodko O, Spadavecchia J, Serrano AY, Larroulet I, Pesquera A, Zurutuza A, Boukherroub R, Szunerits S (2014) Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces. Anal Chem 86:11211–11216
37.
Zurück zum Zitat Liu RJ, Wang Q, Li Q, Yang XH, Wang KM, Nie WY (2017) Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron 87:433–438 Liu RJ, Wang Q, Li Q, Yang XH, Wang KM, Nie WY (2017) Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron 87:433–438
38.
Zurück zum Zitat Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540 Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540
39.
Zurück zum Zitat Ghosh S, Mishra S, Mukhopadhyay R (2014) Enhancing sensitivity in a piezoresistive cantilever-based label-free DNA detection assay using ssPNA sensor probes. J Mat Chem B 2:960–970CrossRef Ghosh S, Mishra S, Mukhopadhyay R (2014) Enhancing sensitivity in a piezoresistive cantilever-based label-free DNA detection assay using ssPNA sensor probes. J Mat Chem B 2:960–970CrossRef
40.
Zurück zum Zitat Huber F, Lang HP, Backmann N, Rimoldi D, Gerber C (2013) Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat Nanotechnol 8:125–129CrossRef Huber F, Lang HP, Backmann N, Rimoldi D, Gerber C (2013) Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat Nanotechnol 8:125–129CrossRef
41.
Zurück zum Zitat Mertens J, Rogero C, Calleja M, Ramos D, Martin-Gago JA, Briones C, Tamayo J (2008) Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol 3:301–307CrossRef Mertens J, Rogero C, Calleja M, Ramos D, Martin-Gago JA, Briones C, Tamayo J (2008) Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol 3:301–307CrossRef
42.
Zurück zum Zitat Zhu R, Howorka S, Proll J, Kienberger F, Preiner J, Hesse J, Ebner A, Pastushenko VP, Gruber HJ, Hinterdorfer P (2010) Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. Nat Nanotechnol 5:788–791CrossRef Zhu R, Howorka S, Proll J, Kienberger F, Preiner J, Hesse J, Ebner A, Pastushenko VP, Gruber HJ, Hinterdorfer P (2010) Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. Nat Nanotechnol 5:788–791CrossRef
43.
Zurück zum Zitat Zheng S, Choi JH, Lee SM, Hwang KS, Kim SK, Kim TS (2011) Analysis of DNA hybridization regarding the conformation of molecular layer with piezoelectric microcantilevers. Lab Chip 11:63–69CrossRef Zheng S, Choi JH, Lee SM, Hwang KS, Kim SK, Kim TS (2011) Analysis of DNA hybridization regarding the conformation of molecular layer with piezoelectric microcantilevers. Lab Chip 11:63–69CrossRef
44.
Zurück zum Zitat McKendry R, Zhang JY, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, Guntherodt HJ, Gerber C (2002) Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci U S A 99:9783–9788CrossRef McKendry R, Zhang JY, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, Guntherodt HJ, Gerber C (2002) Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci U S A 99:9783–9788CrossRef
45.
Zurück zum Zitat Su M, Li SU, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82:3562–3564CrossRef Su M, Li SU, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82:3562–3564CrossRef
46.
Zurück zum Zitat Wu GH, Ji HF, Hansen K, Thundat T, Datar R, Cote R, Hagan MF, Chakraborty AK, Majumdar A (2001) Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc Natl Acad Sci U S A 98:1560–1564CrossRef Wu GH, Ji HF, Hansen K, Thundat T, Datar R, Cote R, Hagan MF, Chakraborty AK, Majumdar A (2001) Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc Natl Acad Sci U S A 98:1560–1564CrossRef
47.
Zurück zum Zitat Lee SM, Hwang KS, Yoon HJ, Yoon DS, Kim SK, Lee YS, Kim TS (2009) Sensitivity enhancement of a dynamic mode microcantilever by stress inducer and mass inducer to detect PSA at low picogram levels. Lab Chip 9:2683–2690CrossRef Lee SM, Hwang KS, Yoon HJ, Yoon DS, Kim SK, Lee YS, Kim TS (2009) Sensitivity enhancement of a dynamic mode microcantilever by stress inducer and mass inducer to detect PSA at low picogram levels. Lab Chip 9:2683–2690CrossRef
48.
Zurück zum Zitat Shu WM, Liu DS, Watari M, Riener CK, Strunz T, Welland ME, Balasubramanian S, McKendry RA (2005) DNA molecular motor driven micromechanical cantilever arrays. J Am Chem Soc 127:17054–17060CrossRef Shu WM, Liu DS, Watari M, Riener CK, Strunz T, Welland ME, Balasubramanian S, McKendry RA (2005) DNA molecular motor driven micromechanical cantilever arrays. J Am Chem Soc 127:17054–17060CrossRef
49.
Zurück zum Zitat Cha BH, Lee SM, Park JC, Hwang KS, Kim SK, Lee YS, Ju BK, Kim TS (2009) Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens Bioelectron 25:130–135CrossRef Cha BH, Lee SM, Park JC, Hwang KS, Kim SK, Lee YS, Ju BK, Kim TS (2009) Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. Biosens Bioelectron 25:130–135CrossRef
50.
Zurück zum Zitat Xu XB, Li HF, Hasan D, Ruoff RS, Wang AX, Fan DL (2013) Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater 23:4332–4338CrossRef Xu XB, Li HF, Hasan D, Ruoff RS, Wang AX, Fan DL (2013) Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater 23:4332–4338CrossRef
51.
Zurück zum Zitat Banholzer MJ, Millstone JE, Qin LD, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897CrossRef Banholzer MJ, Millstone JE, Qin LD, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897CrossRef
52.
Zurück zum Zitat Larmour IA, Graham D (2011) Surface enhanced optical spectroscopies for bioanalysis. Analyst 136:3831–3853CrossRef Larmour IA, Graham D (2011) Surface enhanced optical spectroscopies for bioanalysis. Analyst 136:3831–3853CrossRef
53.
Zurück zum Zitat Prado E, Daugey N, Plumet S, Servant L, Lecomte S (2011) Quantitative label-free RNA detection using surface-enhanced Raman spectroscopy. Chem Commun 47:7425–7427CrossRef Prado E, Daugey N, Plumet S, Servant L, Lecomte S (2011) Quantitative label-free RNA detection using surface-enhanced Raman spectroscopy. Chem Commun 47:7425–7427CrossRef
54.
Zurück zum Zitat Liu YC, Zhong MY, Shan GY, Li YJ, Huang BQ, Yang GL (2008) Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering. J Phys Chem B 112:6484–6489CrossRef Liu YC, Zhong MY, Shan GY, Li YJ, Huang BQ, Yang GL (2008) Biocompatible ZnO/Au nanocomposites for ultrasensitive DNA detection using resonance Raman scattering. J Phys Chem B 112:6484–6489CrossRef
55.
Zurück zum Zitat Hu J, Zheng PC, Jiang JH, Shen GL, Yu RQ, Liu GK (2010) Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. Analyst 135:1084–1089CrossRef Hu J, Zheng PC, Jiang JH, Shen GL, Yu RQ, Liu GK (2010) Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. Analyst 135:1084–1089CrossRef
56.
Zurück zum Zitat Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3:548–551CrossRef Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3:548–551CrossRef
57.
Zurück zum Zitat Zhang ZL, Wen YQ, Ma Y, Luo J, Jiang L, Song YL (2011) Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection. Chem Commun 47:7407–7409CrossRef Zhang ZL, Wen YQ, Ma Y, Luo J, Jiang L, Song YL (2011) Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection. Chem Commun 47:7407–7409CrossRef
58.
Zurück zum Zitat Li JM, Ma WF, You LJ, Guo J, Hu J, Wang CC (2013) Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Langmuir 29:6147–6155CrossRef Li JM, Ma WF, You LJ, Guo J, Hu J, Wang CC (2013) Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Langmuir 29:6147–6155CrossRef
59.
Zurück zum Zitat Sipova H, Zhang SL, Dudley AM, Galas D, Wang K, Homola J (2010) Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem 82:10110–10115CrossRef Sipova H, Zhang SL, Dudley AM, Galas D, Wang K, Homola J (2010) Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem 82:10110–10115CrossRef
60.
Zurück zum Zitat Liu JY, Tian SJ, Tiefenauer L, Nielsen PE, Knoll W (2005) Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates. Anal Chem 77:2756–2761CrossRef Liu JY, Tian SJ, Tiefenauer L, Nielsen PE, Knoll W (2005) Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates. Anal Chem 77:2756–2761CrossRef
61.
Zurück zum Zitat Ding XJ, Yan YR, Li SQ, Zhang Y, Cheng W, Cheng Q, Ding SJ (2015) Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal Chim Acta 874:59–65CrossRef Ding XJ, Yan YR, Li SQ, Zhang Y, Cheng W, Cheng Q, Ding SJ (2015) Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal Chim Acta 874:59–65CrossRef
Metadaten
Titel
Sandwich Assays Based on QCM, SPR, Microcantilever, and SERS Techniques for Nucleic Acid Detection
verfasst von
Xiaoxia Hu
Quan Yuan
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7835-4_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.