Skip to main content
Erschienen in: Cellulose 9/2020

11.04.2020 | Original Research

Sandwich structured RGO/CNF/RGO composite films for superior mechanical and thermally conductive properties

verfasst von: Bo Shan, Yuzhu Xiong, Yihang Li, Hang Yang, Yuanfu Chen

Erschienen in: Cellulose | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is urgent and significant to develop a thermal interface material (TIM) with both high thermal conductivity and excellent mechanical strength for high-performance electronic devices. For the first time, we designed and fabricated a sandwich structured TIM, constructed by a cellulose nanofiber (CNF) core layer sandwiched by reduced graphene oxide (rGO) shell, with copper ions as a crosslinker, via a facile and scalable vacuum filtration process. The continuous rGO layers on the surface of the composite provided a good thermal conductive pathway for the composite films. The thermal conductivity of the sandwiched films with 8.0 wt% rGO reached 29.5 W/mK, which is over eight times than the CNF films, and realized an ultrafast thermal diffusion time at 73 ms. The sandwich structure combined with the cross-linker of copper ions also plays a synergistic role in construct mechanical strength. Compared to the CNF, the tensile strength of the sandwiched films with 8.0 wt% rGO unprecedentedly reached 314 MPa (nearly three times of bare CNF films), and the elongation increased 63%. In addition, the films also shows high water stability and excellent flexibility, which makes it a very promising for advanced flexible or wearable electronics. This work provides a new insight in rational structure design and novel scalable fabrication strategy to develop TIM with outstanding mechanical strength and thermal conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907PubMed Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907PubMed
Zurück zum Zitat Banholzer MJ, Millstone JE, Lidong Q, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897PubMed Banholzer MJ, Millstone JE, Lidong Q, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897PubMed
Zurück zum Zitat Beaussart A, Parkinson L, Mierczynska-Vasilev A, Beattie DA (2012) Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies. J Colloid Interface Sci 368:608–615PubMed Beaussart A, Parkinson L, Mierczynska-Vasilev A, Beattie DA (2012) Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies. J Colloid Interface Sci 368:608–615PubMed
Zurück zum Zitat Brege JJ, Hamilton CE, Crouse CA, Barron AR (2009) Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. Nano Lett 9(6):2239–2242PubMed Brege JJ, Hamilton CE, Crouse CA, Barron AR (2009) Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. Nano Lett 9(6):2239–2242PubMed
Zurück zum Zitat Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91(23):233108 Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91(23):233108
Zurück zum Zitat Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494 Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494
Zurück zum Zitat Feng W, Qin M, Feng Y (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597 Feng W, Qin M, Feng Y (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597
Zurück zum Zitat Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57 Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57
Zurück zum Zitat Gao K, Shao Z, Xue WU, Wang XI, Jia LI, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohyd Polym 97:243–251 Gao K, Shao Z, Xue WU, Wang XI, Jia LI, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohyd Polym 97:243–251
Zurück zum Zitat Guo Y, Pan L, Yang X, Ruan K, Han Y, Kong J, Gu J (2019a) Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos A Appl Sci Manuf 124:105484 Guo Y, Pan L, Yang X, Ruan K, Han Y, Kong J, Gu J (2019a) Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos A Appl Sci Manuf 124:105484
Zurück zum Zitat Guo Y, Yang X, Ruan K, Kong J, Dong M, Zhang J, Gu J, Guo Z (2019b) Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl Mater Interfaces 11:25465–25473PubMed Guo Y, Yang X, Ruan K, Kong J, Dong M, Zhang J, Gu J, Guo Z (2019b) Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl Mater Interfaces 11:25465–25473PubMed
Zurück zum Zitat Hajian A, Lindstrom SB, Pettersson T, Hamedi MM, Wågberg L (2017) Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett 17(3):1439–1447PubMed Hajian A, Lindstrom SB, Pettersson T, Hamedi MM, Wågberg L (2017) Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett 17(3):1439–1447PubMed
Zurück zum Zitat Han Y, Shi X, Yang X, Guo Y, Zhang J, Kong J, Gu J (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944 Han Y, Shi X, Yang X, Guo Y, Zhang J, Kong J, Gu J (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944
Zurück zum Zitat Hu L, Wu H, Cui Y (2011) Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull 36:760–765 Hu L, Wu H, Cui Y (2011) Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull 36:760–765
Zurück zum Zitat Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113PubMed Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113PubMed
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers Nanoscale 3:71–85PubMed Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers Nanoscale 3:71–85PubMed
Zurück zum Zitat Jiali Z, Haijun Y, Guangxia S, Ping C, Jingyan Z, Shouwu G (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112 Jiali Z, Haijun Y, Guangxia S, Ping C, Jingyan Z, Shouwu G (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112
Zurück zum Zitat Jiang F, Cui S, Song N, Shi L, Ding P (2018) Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl Mater Interfaces 10:16812–16821PubMed Jiang F, Cui S, Song N, Shi L, Ding P (2018) Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl Mater Interfaces 10:16812–16821PubMed
Zurück zum Zitat Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Commun 6:7170 Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Commun 6:7170
Zurück zum Zitat Jung-Tsai C, Ywu-Jang F, Quan-Fu A, Shen-Chuan L, Shu-Hsien H, Wei-Song H, Chien-Chieh H, Kueir-Rarn L, Juin-Yih L (2013) Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films. Nanoscale 5:9081–9088 Jung-Tsai C, Ywu-Jang F, Quan-Fu A, Shen-Chuan L, Shu-Hsien H, Wei-Song H, Chien-Chieh H, Kueir-Rarn L, Juin-Yih L (2013) Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films. Nanoscale 5:9081–9088
Zurück zum Zitat Klein F, Pinedo R, Hering P, Polity A, Janek J, Adelhelm P (2016) Reaction mechanism and surface film formation of conversion materials for lithium- and sodium-ion batteries: an XPS case study on sputtered copper oxide (CuO) thin film model electrodes. J Phys Chem C 120(3):1400–1414 Klein F, Pinedo R, Hering P, Polity A, Janek J, Adelhelm P (2016) Reaction mechanism and surface film formation of conversion materials for lithium- and sodium-ion batteries: an XPS case study on sputtered copper oxide (CuO) thin film model electrodes. J Phys Chem C 120(3):1400–1414
Zurück zum Zitat Ko H, Singamaneni S, Tsukruk VV (2010) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599 Ko H, Singamaneni S, Tsukruk VV (2010) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599
Zurück zum Zitat Konradi R, Rühe J (2004) Interaction of poly(methacrylic acid) brushes with metal ions: an infrared investigation. Macromolecules 37:6954–6961 Konradi R, Rühe J (2004) Interaction of poly(methacrylic acid) brushes with metal ions: an infrared investigation. Macromolecules 37:6954–6961
Zurück zum Zitat Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26:4459–4465 Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26:4459–4465
Zurück zum Zitat Lian G, Tuan C-C, Li L, Jiao S, Wang Q, Moon K-S, Cui D, Wong C-P (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104 Lian G, Tuan C-C, Li L, Jiao S, Wang Q, Moon K-S, Cui D, Wong C-P (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104
Zurück zum Zitat Liu Y, Bo X, Xu Z (2011) Mechanics of coordinative crosslinks in graphene nanocomposites: a first-principles study. J Mater Chem 21(18):6707–6712 Liu Y, Bo X, Xu Z (2011) Mechanics of coordinative crosslinks in graphene nanocomposites: a first-principles study. J Mater Chem 21(18):6707–6712
Zurück zum Zitat Liu J, Kutty RG, Zheng Q, Eswariah V, Sreejith S, Liu Z (2016a) Hexagonal boron nitride nanosheets as high-performance binder-free fire-resistant wood coatings. Small 13(2):1602456 Liu J, Kutty RG, Zheng Q, Eswariah V, Sreejith S, Liu Z (2016a) Hexagonal boron nitride nanosheets as high-performance binder-free fire-resistant wood coatings. Small 13(2):1602456
Zurück zum Zitat Liu P, Oksman K, Mathew AP (2016b) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 464:175–182PubMed Liu P, Oksman K, Mathew AP (2016b) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 464:175–182PubMed
Zurück zum Zitat Ma T, Zhao Y, Ruan K, Liu X, Zhang J, Guo Y, Gu J (2019) Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces 12(1):1677–1686PubMed Ma T, Zhao Y, Ruan K, Liu X, Zhang J, Guo Y, Gu J (2019) Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces 12(1):1677–1686PubMed
Zurück zum Zitat Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J (2018) Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today 12:92–130 Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J (2018) Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today 12:92–130
Zurück zum Zitat Ming Z, Anand J, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342 Ming Z, Anand J, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342
Zurück zum Zitat Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174 Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174
Zurück zum Zitat Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012a) A roadmap for graphene. Nature 490:192PubMed Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012a) A roadmap for graphene. Nature 490:192PubMed
Zurück zum Zitat Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228 Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228
Zurück zum Zitat Putz KW, Compton OC, Claire S, Zhi A, Nguyen STL, Catherine B (2011) Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5:6601–6609PubMed Putz KW, Compton OC, Claire S, Zhi A, Nguyen STL, Catherine B (2011) Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5:6601–6609PubMed
Zurück zum Zitat Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos Commun 10:68–72 Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos Commun 10:68–72
Zurück zum Zitat Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989 Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491 Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491
Zurück zum Zitat Sehaqui H, Larraya UPD, Peng L, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844 Sehaqui H, Larraya UPD, Peng L, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844
Zurück zum Zitat Shuying W (2012) Thermal conductivity of nano-Cu/paraffin composite phase change materials. New Chem Mater 40(05):104–106+112 Shuying W (2012) Thermal conductivity of nano-Cu/paraffin composite phase change materials. New Chem Mater 40(05):104–106+112
Zurück zum Zitat Song N, Jiao D, Ding P, Cui S, Tang S, Shi L (2016) Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J Mater Chem C 4:305–314 Song N, Jiao D, Ding P, Cui S, Tang S, Shi L (2016) Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J Mater Chem C 4:305–314
Zurück zum Zitat Song N, Hou X, Chen L, Cui S, Shi L, Ding P (2017a) A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. Acs Appl Mater Interfaces 9:17914–17922PubMed Song N, Hou X, Chen L, Cui S, Shi L, Ding P (2017a) A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. Acs Appl Mater Interfaces 9:17914–17922PubMed
Zurück zum Zitat Song N, Jiao J, Cui S, Hou X, Ding P, Shi L (2017b) Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. Acs Appl Mater Interfaces 9(3):2924–2932PubMed Song N, Jiao J, Cui S, Hou X, Ding P, Shi L (2017b) Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. Acs Appl Mater Interfaces 9(3):2924–2932PubMed
Zurück zum Zitat Sungjin P, Kyoung-Seok L, Gulay B, Weiwei C, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–657 Sungjin P, Kyoung-Seok L, Gulay B, Weiwei C, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–657
Zurück zum Zitat Tang L, He M, Na X, Guan X, Zhang R, Zhang J, Gu J (2019) Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos Commun 16:5–10 Tang L, He M, Na X, Guan X, Zhang R, Zhang J, Gu J (2019) Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos Commun 16:5–10
Zurück zum Zitat Wei Y, Xie H, Chen L, Zhao J, Li F (2015) Modified graphene papers with alkaline earth metal ions endowed with high heat transfer properties. Thin Solid Films 597:77–82 Wei Y, Xie H, Chen L, Zhao J, Li F (2015) Modified graphene papers with alkaline earth metal ions endowed with high heat transfer properties. Thin Solid Films 597:77–82
Zurück zum Zitat Xuelin Y, Wenjin Y, Xin X, Feng C, Qiang F (2015) Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction. Nanoscale 7:3959–3964 Xuelin Y, Wenjin Y, Xin X, Feng C, Qiang F (2015) Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction. Nanoscale 7:3959–3964
Zurück zum Zitat Yang H, Shan C, Li F, Zhang Q, Li N (2009) Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem 19:8856–8860 Yang H, Shan C, Li F, Zhang Q, Li N (2009) Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem 19:8856–8860
Zurück zum Zitat Yang W, Zhao Z, Wu K, Huang R, Liu T, Jiang H, Chen F, Fu Q (2017) Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J Mater Chem C 5(15):3748–3756 Yang W, Zhao Z, Wu K, Huang R, Liu T, Jiang H, Chen F, Fu Q (2017) Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J Mater Chem C 5(15):3748–3756
Zurück zum Zitat Yang W, Gong Y, Zhao X, Liu T, Zhang Y, Chen F, Fu Q (2019) Strong and highly conductive graphene composite film based on the nanocellulose-assisted dispersion of expanded graphite and incorporation of poly (ethylene oxide). ACS Sustain Chem Eng 7:5045–5056 Yang W, Gong Y, Zhao X, Liu T, Zhang Y, Chen F, Fu Q (2019) Strong and highly conductive graphene composite film based on the nanocellulose-assisted dispersion of expanded graphite and incorporation of poly (ethylene oxide). ACS Sustain Chem Eng 7:5045–5056
Zurück zum Zitat Yao J, Chen S, Chen Y, Wang B, Pei Q, Wang H (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interfaces 9(24):20330–20339PubMed Yao J, Chen S, Chen Y, Wang B, Pei Q, Wang H (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interfaces 9(24):20330–20339PubMed
Zurück zum Zitat Yao Y, Sun J, Zeng X, Sun R, Xu JB, Wong CP (2018) Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14:1704044 Yao Y, Sun J, Zeng X, Sun R, Xu JB, Wong CP (2018) Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14:1704044
Zurück zum Zitat Zeng X, Xiong Y, Fu Q, Sun R, Xu J, Xu D, Wong CP (2017) Structure-induced variation of thermal conductivity in epoxy resin fibers. Nanoscale 9(30):10585–10589PubMed Zeng X, Xiong Y, Fu Q, Sun R, Xu J, Xu D, Wong CP (2017) Structure-induced variation of thermal conductivity in epoxy resin fibers. Nanoscale 9(30):10585–10589PubMed
Zurück zum Zitat Zhang Y, Li X (2017) Bio-inspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett 17(11):6907–6915PubMed Zhang Y, Li X (2017) Bio-inspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett 17(11):6907–6915PubMed
Zurück zum Zitat Zhang K, Lu Y, Hao N, Nie S (2019) Enhanced thermal conductivity of cellulose nanofibril/aluminum nitride hybrid films by surface modification of aluminum nitride. Cellulose 26:8669–8683 Zhang K, Lu Y, Hao N, Nie S (2019) Enhanced thermal conductivity of cellulose nanofibril/aluminum nitride hybrid films by surface modification of aluminum nitride. Cellulose 26:8669–8683
Zurück zum Zitat Zhao W, Kong J, Liu H, Zhuang Q, Gu J, Guo Z (2016) Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8:19983–19994 Zhao W, Kong J, Liu H, Zhuang Q, Gu J, Guo Z (2016) Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8:19983–19994
Zurück zum Zitat Zhen X, Haiyan S, Xiaoli Z, Chao G (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25:188–193 Zhen X, Haiyan S, Xiaoli Z, Chao G (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25:188–193
Zurück zum Zitat Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X (2016) Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano 10(8):7792–7798PubMed Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X (2016) Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano 10(8):7792–7798PubMed
Zurück zum Zitat Zhou L, Yang Z, Luo W, Han X, Jang SN, Dai J, Yang B, Hu L (2016) A thermally conductive, electrical insulating, optically transparent Bi-layer nanopaper. ACS Appl Mater Interfaces 8(42):28838–28843PubMed Zhou L, Yang Z, Luo W, Han X, Jang SN, Dai J, Yang B, Hu L (2016) A thermally conductive, electrical insulating, optically transparent Bi-layer nanopaper. ACS Appl Mater Interfaces 8(42):28838–28843PubMed
Zurück zum Zitat Zhu Y, Murali S, Cai W, Li X, Ji WS, Potts JR, Ruoff RS (2010) Graphene-based materials: graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924PubMed Zhu Y, Murali S, Cai W, Li X, Ji WS, Potts JR, Ruoff RS (2010) Graphene-based materials: graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924PubMed
Zurück zum Zitat Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374PubMed Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374PubMed
Zurück zum Zitat Zhu C, Liu P, Mathew AP (2017a) Self-assembled TEMPO cellulose nanofibers - graphene oxide based biohybrids for water purification. ACS Appl Mater Interfaces 9(24):21048–21058PubMed Zhu C, Liu P, Mathew AP (2017a) Self-assembled TEMPO cellulose nanofibers - graphene oxide based biohybrids for water purification. ACS Appl Mater Interfaces 9(24):21048–21058PubMed
Zurück zum Zitat Zhu C, Soldatov A, Mathew A (2017b) Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu (II) onto TEMPO-oxidized cellulose nanofibers. Nanoscale 9(22):7419–7428PubMed Zhu C, Soldatov A, Mathew A (2017b) Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu (II) onto TEMPO-oxidized cellulose nanofibers. Nanoscale 9(22):7419–7428PubMed
Metadaten
Titel
Sandwich structured RGO/CNF/RGO composite films for superior mechanical and thermally conductive properties
verfasst von
Bo Shan
Yuzhu Xiong
Yihang Li
Hang Yang
Yuanfu Chen
Publikationsdatum
11.04.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 9/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03150-5

Weitere Artikel der Ausgabe 9/2020

Cellulose 9/2020 Zur Ausgabe