Skip to main content

2025 | OriginalPaper | Buchkapitel

Satellite-Driven Deep Learning Algorithm for Bathymetry Extraction

verfasst von : Xiaohan Zhang, Xiaolong Chen, Wei Han, Xiaohui Huang, Yunliang Chen, Jianxin Li, Lizhe Wang

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Accurate bathymetry using remotely sensed data is essential for various ocean-related fields such as marine resource exploration, environmental protection and offshore development. Traditional bathymetric techniques often face limitations in high-risk areas, whereas satellite-based methods offer advantages such as low cost and extensive coverage. This work aims to integrate the complementary strengths of ICESat-2 and Sentinel-2 satellites. We propose a novel dual-distance noise reduction algorithm to extract bathymetric information from ICESat-2 data, which is then integrated with Sentinel-2 optical imagery using a U-Net deep learning model. This approach enables precise inference of near-shore bathymetric distributions. Experimental results demonstrate the efficacy of the dual-distance noise reduction algorithm in accurately identifying photon signal points, achieving an average \(R^2\) of 0.906 and an RMSE of 0.778 m in bathymetric estimation. The study provides a robust scientific basis for active-passive fusion bathymetry inversion strategies in different scenarios.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Becker, J.J., Sandwell, D.T.: Global estimates of seafloor slope from single-beam ship soundings. J. Geophys. Res. Oceans 113(C5) (2008) Becker, J.J., Sandwell, D.T.: Global estimates of seafloor slope from single-beam ship soundings. J. Geophys. Res. Oceans 113(C5) (2008)
2.
Zurück zum Zitat Borland, H.P., et al.: The influence of seafloor terrain on fish and fisheries: a global synthesis. Fish Fish. 22(4), 707–734 (2021)CrossRef Borland, H.P., et al.: The influence of seafloor terrain on fish and fisheries: a global synthesis. Fish Fish. 22(4), 707–734 (2021)CrossRef
3.
Zurück zum Zitat Bramante, J.F., Raju, D.K., Sin, T.M.: Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. Int. J. Remote Sens. 34(6), 2070–2088 (2013)CrossRef Bramante, J.F., Raju, D.K., Sin, T.M.: Multispectral derivation of bathymetry in Singapore’s shallow, turbid waters. Int. J. Remote Sens. 34(6), 2070–2088 (2013)CrossRef
4.
Zurück zum Zitat Casal, G., Harris, P., Monteys, X., Hedley, J., Cahalane, C., McCarthy, T.: Understanding satellite-derived bathymetry using sentinel 2 imagery and spatial prediction models. GIScience Remote Sens. 57(3), 271–286 (2020)CrossRef Casal, G., Harris, P., Monteys, X., Hedley, J., Cahalane, C., McCarthy, T.: Understanding satellite-derived bathymetry using sentinel 2 imagery and spatial prediction models. GIScience Remote Sens. 57(3), 271–286 (2020)CrossRef
5.
Zurück zum Zitat Ernstsen, V.B., Noormets, R., Hebbeln, D., Bartholomä, A., Flemming, B.W.: Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-Mar. Lett. 26, 141–149 (2006)CrossRef Ernstsen, V.B., Noormets, R., Hebbeln, D., Bartholomä, A., Flemming, B.W.: Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-Mar. Lett. 26, 141–149 (2006)CrossRef
6.
Zurück zum Zitat Gao, J.: Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Prog. Phys. Geogr. 33(1), 103–116 (2009)CrossRef Gao, J.: Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Prog. Phys. Geogr. 33(1), 103–116 (2009)CrossRef
7.
Zurück zum Zitat Geyman, E.C., Maloof, A.C.: A simple method for extracting water depth from multispectral satellite imagery in regions of variable bottom type. Earth Space Sci. 6(3), 527–537 (2019)CrossRef Geyman, E.C., Maloof, A.C.: A simple method for extracting water depth from multispectral satellite imagery in regions of variable bottom type. Earth Space Sci. 6(3), 527–537 (2019)CrossRef
8.
Zurück zum Zitat Han, W., et al.: A survey of machine learning and deep learning in remote sensing of geological environment: challenges, advances, and opportunities. ISPRS J. Photogramm. Remote. Sens. 202, 87–113 (2023)CrossRef Han, W., et al.: A survey of machine learning and deep learning in remote sensing of geological environment: challenges, advances, and opportunities. ISPRS J. Photogramm. Remote. Sens. 202, 87–113 (2023)CrossRef
9.
Zurück zum Zitat Hedley, J., Roelfsema, C., Phinn, S.R.: Efficient radiative transfer model inversion for remote sensing applications. Remote Sens. Environ. 113(11), 2527–2532 (2009)CrossRef Hedley, J., Roelfsema, C., Phinn, S.R.: Efficient radiative transfer model inversion for remote sensing applications. Remote Sens. Environ. 113(11), 2527–2532 (2009)CrossRef
10.
Zurück zum Zitat Hedley, J.D., et al.: Coral reef applications of Sentinel-2: coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 216, 598–614 (2018)CrossRef Hedley, J.D., et al.: Coral reef applications of Sentinel-2: coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 216, 598–614 (2018)CrossRef
11.
Zurück zum Zitat Key, K.: Marine electromagnetic studies of seafloor resources and tectonics. Surv. Geophys. 33, 135–167 (2012)CrossRef Key, K.: Marine electromagnetic studies of seafloor resources and tectonics. Surv. Geophys. 33, 135–167 (2012)CrossRef
12.
Zurück zum Zitat Marks, K., Smith, W.: An uncertainty model for deep ocean single beam and multibeam echo sounder data. Mar. Geophys. Res. 29, 239–250 (2008)CrossRef Marks, K., Smith, W.: An uncertainty model for deep ocean single beam and multibeam echo sounder data. Mar. Geophys. Res. 29, 239–250 (2008)CrossRef
14.
Zurück zum Zitat Zhang, X., et al.: Nearshore bathymetry based on ICESat-2 and multispectral images: comparison between Sentinel-2, Landsat-8, and testing Gaofen-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 2449–2462 (2022)CrossRef Zhang, X., et al.: Nearshore bathymetry based on ICESat-2 and multispectral images: comparison between Sentinel-2, Landsat-8, and testing Gaofen-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 2449–2462 (2022)CrossRef
15.
Zurück zum Zitat Zhang, X., Han, W., Li, J., Wang, L.: Nearshore bathymetry estimation through dual-time phase satellite imagery in the absence of in-situ data. GIScience Remote Sens. 60(1), 2275424 (2023)CrossRef Zhang, X., Han, W., Li, J., Wang, L.: Nearshore bathymetry estimation through dual-time phase satellite imagery in the absence of in-situ data. GIScience Remote Sens. 60(1), 2275424 (2023)CrossRef
16.
Zurück zum Zitat Zhang, X., Wang, L., Li, J., Han, W., Fan, R., Wang, S.: Satellite-derived sediment distribution mapping using ICESat-2 and SuperDove. ISPRS J. Photogramm. Remote. Sens. 202, 545–564 (2023)CrossRef Zhang, X., Wang, L., Li, J., Han, W., Fan, R., Wang, S.: Satellite-derived sediment distribution mapping using ICESat-2 and SuperDove. ISPRS J. Photogramm. Remote. Sens. 202, 545–564 (2023)CrossRef
Metadaten
Titel
Satellite-Driven Deep Learning Algorithm for Bathymetry Extraction
verfasst von
Xiaohan Zhang
Xiaolong Chen
Wei Han
Xiaohui Huang
Yunliang Chen
Jianxin Li
Lizhe Wang
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_23