Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

18.01.2019 | Focus | Ausgabe 8/2020

Soft Computing 8/2020

Scalable detection of botnets based on DGA

Efficient feature discovery process in machine learning techniques

Zeitschrift:
Soft Computing > Ausgabe 8/2020
Autoren:
Mattia Zago, Manuel Gil Pérez, Gregorio Martínez Pérez
Wichtige Hinweise
Communicated by B. B. Gupta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Botnets are evolving, and their covert modus operandi, based on cloud technologies such as the virtualisation and the dynamic fast-flux addressing, has been proved challenging for classic intrusion detection systems and even the so-called next-generation firewalls. Moreover, dynamic addressing has been spotted in the wild in combination with pseudo-random domain names generation algorithm (DGA), ultimately leading to an extremely accurate and effective disguise technique. Although these concealing methods have been exposed and analysed to great extent in the past decade, the literature lacks some important conclusions and common-ground knowledge, especially when it comes to Machine Learning (ML) solutions. This research horizontally navigates the state of the art aiming to polish the feature discovery process, which is the single most time-consuming part of any ML approach. Results show that only a minor fraction of the defined features are indeed practical and informative, especially when considering 0-day botnet identification. The contributions described in this article will ease the detection process, ultimately enabling improved and more scalable solutions for DGA-based botnets detection.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2020

Soft Computing 8/2020 Zur Ausgabe

Premium Partner

    Bildnachweise