Skip to main content
Erschienen in: Autonomous Robots 3/2019

09.04.2018

Scalable Markov chain approximation for a safe intercept navigation in the presence of multiple vehicles

verfasst von: Alexey A. Munishkin, Araz Hashemi, David W. Casbeer, Dejan Milutinović

Erschienen in: Autonomous Robots | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies a safe intercept navigation which accounts for the uncertainty of other vehicles’ trajectories, avoids collisions and any other positions in which vehicle safety is compromised. Since the number of vehicles can vary with time, it is important that the navigation strategy can quickly adjust to the current number of vehicles, i.e, that it scales well with the number of vehicles. The scalable strategy is based on a stochastic optimal control problem formulation of safe navigation in the presence of a single vehicle, denoted as the one-on-one vehicle problem. It is shown that safe navigation in the presence of multiple vehicles can be solved exactly as an auxiliary Markov decision problem. This allows us to approximate the solution based on the one-on-one vehicle optimal control solution and achieve scalable navigation. Our work is illustrated by a numerical example of safely navigating a vehicle in the presence of four other vehicles and by a robot experiment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart, R. (2013). Optimal reciprocal collision avoidance for multiple non-holonomic robots (pp. 203–216). Berlin, Heidelberg: Springer. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart, R. (2013). Optimal reciprocal collision avoidance for multiple non-holonomic robots (pp. 203–216). Berlin, Heidelberg: Springer.
Zurück zum Zitat Ardema, M. D., Heymann, M., & Rajan, N. (1985). Combat games. Journal of Optimization Theory and Applications, 46(4), 391–398.MathSciNetCrossRefMATH Ardema, M. D., Heymann, M., & Rajan, N. (1985). Combat games. Journal of Optimization Theory and Applications, 46(4), 391–398.MathSciNetCrossRefMATH
Zurück zum Zitat Eklund, J., Sprinkle, J., Kim, H., & Sastry, S. (2005). Implementing and testing a nonlinear model predictive tracking controller for aerial pursuit/evasion games on a fixed wing aircraft. In 2005 American control conference (ACC) (Vol. 3, pp. 1509–1514). Eklund, J., Sprinkle, J., Kim, H., & Sastry, S. (2005). Implementing and testing a nonlinear model predictive tracking controller for aerial pursuit/evasion games on a fixed wing aircraft. In 2005 American control conference (ACC) (Vol. 3, pp. 1509–1514).
Zurück zum Zitat Festa, A., & Vinter, R. B. (2016). Decomposition of differential games with multiple targets. Journal of Optimization Theory and Applications, 169, 849–875.MathSciNetCrossRefMATH Festa, A., & Vinter, R. B. (2016). Decomposition of differential games with multiple targets. Journal of Optimization Theory and Applications, 169, 849–875.MathSciNetCrossRefMATH
Zurück zum Zitat Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic optimal control. New York: Springer.CrossRefMATH Fleming, W. H., & Rishel, R. W. (1975). Deterministic and stochastic optimal control. New York: Springer.CrossRefMATH
Zurück zum Zitat Gardiner, C. (2009). Stochastic methods: A handbook for the natural and social sciences. Berlin, Heidelberg: Springer.MATH Gardiner, C. (2009). Stochastic methods: A handbook for the natural and social sciences. Berlin, Heidelberg: Springer.MATH
Zurück zum Zitat Getz, W. M., & Leitmann, G. (1979). Qualitative differential games with two targets. Journal of Mathematical Analysis and Applications, 68, 421–430.MathSciNetCrossRefMATH Getz, W. M., & Leitmann, G. (1979). Qualitative differential games with two targets. Journal of Mathematical Analysis and Applications, 68, 421–430.MathSciNetCrossRefMATH
Zurück zum Zitat Getz, W. M., & Pachter, M. (1981). Capturability in a two-target “game of two cars”. Journal of Guidance and Control, 4(1), 15–22.CrossRefMATH Getz, W. M., & Pachter, M. (1981). Capturability in a two-target “game of two cars”. Journal of Guidance and Control, 4(1), 15–22.CrossRefMATH
Zurück zum Zitat Grimm, W., & Well, K. H. (1991). Modelling air combat as differential game recent approaches and future requirements. In R. P. Hämäläinen, & H. K. Ehtamo (Eds.), Differential games—Developments in modelling and computation. Lecture notes in control and information sciences (Vol. 156). Berlin, Heidelberg: Springer. Grimm, W., & Well, K. H. (1991). Modelling air combat as differential game recent approaches and future requirements. In R. P. Hämäläinen, & H. K. Ehtamo (Eds.), Differential games—Developments in modelling and computation. Lecture notes in control and information sciences (Vol. 156). Berlin, Heidelberg: Springer.
Zurück zum Zitat Hoy, M., Matveev, A., & Savkin, A. (2015). Algorithms for collision-free navigation of mobile robots in complex cluttered environments: A survey. Robotica, 33(3), 463–497.CrossRef Hoy, M., Matveev, A., & Savkin, A. (2015). Algorithms for collision-free navigation of mobile robots in complex cluttered environments: A survey. Robotica, 33(3), 463–497.CrossRef
Zurück zum Zitat Huang, H., Ding, J., Zhang, W., & Tomlin, C. J. (2015). Automation-assisted capture-the-flag: A differential game approach. IEEE Transactions on Control Systems Technology, 23(3), 1014–1028.CrossRef Huang, H., Ding, J., Zhang, W., & Tomlin, C. J. (2015). Automation-assisted capture-the-flag: A differential game approach. IEEE Transactions on Control Systems Technology, 23(3), 1014–1028.CrossRef
Zurück zum Zitat Isaacs, R. (1965). Differential games. New York, NY: Wiley.MATH Isaacs, R. (1965). Differential games. New York, NY: Wiley.MATH
Zurück zum Zitat Israelsen, B. W., Ahmed, N., Center, K., Green, R., & Bennett Jr., W. (2017). Adaptive simulation-based training of ai decision-makers using bayesian optimization. arxiv:1703.09310. Israelsen, B. W., Ahmed, N., Center, K., Green, R., & Bennett Jr., W. (2017). Adaptive simulation-based training of ai decision-makers using bayesian optimization. arxiv:​1703.​09310.
Zurück zum Zitat Kushner, H. J., & Dupuis, P. (2001). Numerical methods for stochastic control problems in continuous time, stochastic modelling and applied probability (Vol. 24). New York, NY: Springer.CrossRefMATH Kushner, H. J., & Dupuis, P. (2001). Numerical methods for stochastic control problems in continuous time, stochastic modelling and applied probability (Vol. 24). New York, NY: Springer.CrossRefMATH
Zurück zum Zitat Li, D., Cruz, J. B., & Schumacher, C. J. (2008). Stochastic multi-player pursuit-evasion differential games. International Journal of Robust and Nonlinear Control, 18(6), 218–247.MathSciNetCrossRefMATH Li, D., Cruz, J. B., & Schumacher, C. J. (2008). Stochastic multi-player pursuit-evasion differential games. International Journal of Robust and Nonlinear Control, 18(6), 218–247.MathSciNetCrossRefMATH
Zurück zum Zitat McGrew, J. S., How, J. P., Williams, B., & Roy, N. (2010). Air-combat strategy using approximate dynamic programming. Journal of Guidance, Control, and Dynamics, 33(5), 1509–1514.CrossRef McGrew, J. S., How, J. P., Williams, B., & Roy, N. (2010). Air-combat strategy using approximate dynamic programming. Journal of Guidance, Control, and Dynamics, 33(5), 1509–1514.CrossRef
Zurück zum Zitat Milutinović, D., Casbeer, D. W., Kingston, D., & Rasmussen, S. A. (2017). Stochastic approach to small uav feedback control for target tracking and blind spot avoidance. In Proceedings of the 1st IEEE conference on control technology and applications. Milutinović, D., Casbeer, D. W., Kingston, D., & Rasmussen, S. A. (2017). Stochastic approach to small uav feedback control for target tracking and blind spot avoidance. In Proceedings of the 1st IEEE conference on control technology and applications.
Zurück zum Zitat Panagou, D., Stipanović, D. M., & Voulgaris, P. G. (2016). Distributed coordination control for multi-robot networks using Lyapunov-like barrier functions. IEEE Transactions on Automatic Control, 61(3), 617–632.MathSciNetCrossRefMATH Panagou, D., Stipanović, D. M., & Voulgaris, P. G. (2016). Distributed coordination control for multi-robot networks using Lyapunov-like barrier functions. IEEE Transactions on Automatic Control, 61(3), 617–632.MathSciNetCrossRefMATH
Zurück zum Zitat Powell, W. B. (2009). What you should know about approximate dynamic programming. Naval Research Logistics (NRL), 56(3), 239–249.MathSciNetCrossRefMATH Powell, W. B. (2009). What you should know about approximate dynamic programming. Naval Research Logistics (NRL), 56(3), 239–249.MathSciNetCrossRefMATH
Zurück zum Zitat Song, Q., & Yin, G. G. (2010). Convergence rates of Markov chain approximation methods for controlled diffusions with stopping. Journal of Systems Science and Complexity, 23(3), 600–621.MathSciNetCrossRefMATH Song, Q., & Yin, G. G. (2010). Convergence rates of Markov chain approximation methods for controlled diffusions with stopping. Journal of Systems Science and Complexity, 23(3), 600–621.MathSciNetCrossRefMATH
Zurück zum Zitat Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., & Sastry, S. (2002). Probabilistic pursuit-evasion games: Theory, implementation, and experimental evaluation. IEEE Transactions on Robotics and Automation, 18(5), 662–669.CrossRef Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., & Sastry, S. (2002). Probabilistic pursuit-evasion games: Theory, implementation, and experimental evaluation. IEEE Transactions on Robotics and Automation, 18(5), 662–669.CrossRef
Zurück zum Zitat Vieira, M. A. M., Govindan, R., & Sukhatme, G. S. (2009). Scalable and practical pursuit-evasion with networked robots. Intelligent Service Robotics, 2(4), 247.CrossRef Vieira, M. A. M., Govindan, R., & Sukhatme, G. S. (2009). Scalable and practical pursuit-evasion with networked robots. Intelligent Service Robotics, 2(4), 247.CrossRef
Zurück zum Zitat Virtanen, K., Karelahti, J., & Raivio, T. (2006). Modeling air combat by a moving horizon influence diagram game. Journal of Guidance, Control, and Dynamics, 29(5), 1509–1514.CrossRef Virtanen, K., Karelahti, J., & Raivio, T. (2006). Modeling air combat by a moving horizon influence diagram game. Journal of Guidance, Control, and Dynamics, 29(5), 1509–1514.CrossRef
Zurück zum Zitat Yavin, Y. (1988). Stochastic two-target pursuit-evasion differential games in the plane. Journal of Optimization Theory and Applications, 56(3), 325–343.MathSciNetCrossRefMATH Yavin, Y. (1988). Stochastic two-target pursuit-evasion differential games in the plane. Journal of Optimization Theory and Applications, 56(3), 325–343.MathSciNetCrossRefMATH
Zurück zum Zitat Yavin, Y., & Villers, R. D. (1988). Stochastic pursuit-evasion differential games in 3D. Journal of Optimization Theory and Applications, 56(3), 345–357.MathSciNetCrossRefMATH Yavin, Y., & Villers, R. D. (1988). Stochastic pursuit-evasion differential games in 3D. Journal of Optimization Theory and Applications, 56(3), 345–357.MathSciNetCrossRefMATH
Metadaten
Titel
Scalable Markov chain approximation for a safe intercept navigation in the presence of multiple vehicles
verfasst von
Alexey A. Munishkin
Araz Hashemi
David W. Casbeer
Dejan Milutinović
Publikationsdatum
09.04.2018
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 3/2019
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-018-9739-0

Weitere Artikel der Ausgabe 3/2019

Autonomous Robots 3/2019 Zur Ausgabe

Neuer Inhalt