Skip to main content

2021 | OriginalPaper | Buchkapitel

Scale-Resolving Simulation of Aeroacoustic Sound from Coanda Flaps

verfasst von : Paul Bernicke, Varun B. Ananthan, Rinie A. D. Akkermans, Jürgen Dierke, Roland Ewert

Erschienen in: Fundamentals of High Lift for Future Civil Aircraft

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This manuscript summarizes the work performed by the authors (project A8) as part of the Collaborative Research Centre CRC 880 Fundamentals of High Lift for Future Civil Aircraft. Our work aimed to further enhance the understanding of the source mechanisms of solid and porous materials inside turbulent flows by the use of scale-resolving simulations. On the basis of a novel Large Eddy Simulations approach, called Overset-LES, the source mechanism and sound reduction of porous materials were investigated. The governing equations are based on the compressible Navier-Stokes equations in perturbation form. The presence of porous material was modelled by a volume-averaged approach. This volume-averaged model, including nonlinear terms, serves to clarify the sound generation while fully accounting for the nonlinear interaction between fluid and acoustics. The developed hybrid zonal simulation tool with volumetric inflow forcing was applied to a NACA0012 airfoil’s trailing-edge, with or without a porous insert, at representative Mach and Reynolds number of 0.1118 and \(1.0\times 10^6\), respectively. Three dimensional simulations of the NACA0012 trailing edge (with a solid and porous inset) showed good agreement with aerodynamic and aeroacoustic validation experiments. Applying porous material to the trailing-edge’s noise confirms the results reported in literature and underlines the validity of the porous model as well as it illustrates possible further applications. The same computational approach was applied to the situation of a Coanda flap, showing that such computations are feasible with practical computational resources.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Howe, M.S.: A review of the theory of trailing edge noise. J. Sound Vib. 90, 482–487 (1991) Howe, M.S.: A review of the theory of trailing edge noise. J. Sound Vib. 90, 482–487 (1991)
2.
Zurück zum Zitat Amiet, R.K.: Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47(3), 387–93 (1976)CrossRef Amiet, R.K.: Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47(3), 387–93 (1976)CrossRef
3.
Zurück zum Zitat Bohn, J.A.: Edge noise attenuation by porous-edge extensions. Aerosp. Sci. Meet. AIAA, AIAA Pap. 76–0080, 1–4 (1979) Bohn, J.A.: Edge noise attenuation by porous-edge extensions. Aerosp. Sci. Meet. AIAA, AIAA Pap. 76–0080, 1–4 (1979)
4.
Zurück zum Zitat Geyer, T.F., Sarradj, E., Fritzsche, C.: Porous airfoils: noise reduction and boundary layer effects. Int. J. Aeroacoust 9, 787–820 (2010)CrossRef Geyer, T.F., Sarradj, E., Fritzsche, C.: Porous airfoils: noise reduction and boundary layer effects. Int. J. Aeroacoust 9, 787–820 (2010)CrossRef
5.
Zurück zum Zitat Geyer, T.F., Sarradj, E.: Self noise reduction and aerodynamics of airfoils with porous trailing edges. Acoustics 1(2), 393–409 (2019)CrossRef Geyer, T.F., Sarradj, E.: Self noise reduction and aerodynamics of airfoils with porous trailing edges. Acoustics 1(2), 393–409 (2019)CrossRef
6.
Zurück zum Zitat Ali, S.A.S., Azarpeyvand, M., Da Silva, C.R.I.: Trailing-edge flow and noise control using porous treatments. J. Fluid Mech. 850, 83–119 (2018)CrossRefMATH Ali, S.A.S., Azarpeyvand, M., Da Silva, C.R.I.: Trailing-edge flow and noise control using porous treatments. J. Fluid Mech. 850, 83–119 (2018)CrossRefMATH
7.
Zurück zum Zitat Carpio, A.R., Martínez, R.M., Avallone, F., Ragni, D., Snellen, M., van der Zwaag, S.: Experimental characterization of the turbulent boundary layer over a porous trailing edge for noise abatement. J. Sound Vib. 443, 537–58 (2019)CrossRef Carpio, A.R., Martínez, R.M., Avallone, F., Ragni, D., Snellen, M., van der Zwaag, S.: Experimental characterization of the turbulent boundary layer over a porous trailing edge for noise abatement. J. Sound Vib. 443, 537–58 (2019)CrossRef
8.
Zurück zum Zitat Koh, S.R., Zhou, B., Meinke, M., Gauger, N., Schröder, W.: Numerical Analysis of the Impact of Variable Porosity on Trailing-Edge Noise. Comput. Fluids 167, 66–81 (2018)MathSciNetCrossRefMATH Koh, S.R., Zhou, B., Meinke, M., Gauger, N., Schröder, W.: Numerical Analysis of the Impact of Variable Porosity on Trailing-Edge Noise. Comput. Fluids 167, 66–81 (2018)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Kisil, A., Ayton, L.J.: Aerodynamic noise from rigid trailing edges with finite porous extensions. J. Fluid Mech. 836, 117–44 (2018)MathSciNetCrossRefMATH Kisil, A., Ayton, L.J.: Aerodynamic noise from rigid trailing edges with finite porous extensions. J. Fluid Mech. 836, 117–44 (2018)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Bae, Y., Moon, Y.J.: Effect of passive porous surface on the trailing-edge noise. Phys. Fluids 23(12), 1–14 (2011)CrossRef Bae, Y., Moon, Y.J.: Effect of passive porous surface on the trailing-edge noise. Phys. Fluids 23(12), 1–14 (2011)CrossRef
11.
Zurück zum Zitat Herr, M., Rossignol, K.S., Delfs, J.W., Moessner, M., Lippitz, N.: Specification of Porous Materials for Low-Noise Trailing-Edge Applications. 20th Aeroacoustics Conference, AIAA Paper 2014–3041, pp. 1–19 (2014) Herr, M., Rossignol, K.S., Delfs, J.W., Moessner, M., Lippitz, N.: Specification of Porous Materials for Low-Noise Trailing-Edge Applications. 20th Aeroacoustics Conference, AIAA Paper 2014–3041, pp. 1–19 (2014)
12.
Zurück zum Zitat Geurts, B.J.: Elements of direct and large-eddy simulation. R.T. Edwards, Flourtown (2003) Geurts, B.J.: Elements of direct and large-eddy simulation. R.T. Edwards, Flourtown (2003)
13.
Zurück zum Zitat Fröhlich, J., von Terzi, D.: LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44(5), 349–77 (2008)CrossRef Fröhlich, J., von Terzi, D.: LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44(5), 349–77 (2008)CrossRef
14.
Zurück zum Zitat M.S.A. Moghadam, Implementation of viscous terms into the computational aeroacoustics code PIANO, MSc Thesis TU Braunschweig (2012) M.S.A. Moghadam, Implementation of viscous terms into the computational aeroacoustics code PIANO, MSc Thesis TU Braunschweig (2012)
15.
Zurück zum Zitat Ewert, R., Bauer, M., Lummer, M.: A review of state-of-the-art aeroacoustic prediction approaches. In: Aircraft Noise, Monograph VKI Lecture Series 2012-02, Aircraft Noise, von Karman Institute for Fluid Dynamics, Brussels (2012) Ewert, R., Bauer, M., Lummer, M.: A review of state-of-the-art aeroacoustic prediction approaches. In: Aircraft Noise, Monograph VKI Lecture Series 2012-02, Aircraft Noise, von Karman Institute for Fluid Dynamics, Brussels (2012)
16.
Zurück zum Zitat Ewert, R., Dierke, J., Neifeld, A., Moghadam, S.M.A.: Linear and Non-Linear Perturbation Equations with Relaxation Source Terms for Forced Eddy Simulation of Aeroacoustic Sound Generation, 20th Aeroacoustics Conference. AIAA Paper 2014–3053, 1–31 (2014) Ewert, R., Dierke, J., Neifeld, A., Moghadam, S.M.A.: Linear and Non-Linear Perturbation Equations with Relaxation Source Terms for Forced Eddy Simulation of Aeroacoustic Sound Generation, 20th Aeroacoustics Conference. AIAA Paper 2014–3053, 1–31 (2014)
17.
Zurück zum Zitat Akkermans, R.A.D., Ewert, R., Moghadam, S.M.A., Dierke, J., Buchmann, N.: Overset DNS with application to sound source prediction. Notes Numer. Fluid Dyn. Multi. Design. 130, 59–68 (2015) Akkermans, R.A.D., Ewert, R., Moghadam, S.M.A., Dierke, J., Buchmann, N.: Overset DNS with application to sound source prediction. Notes Numer. Fluid Dyn. Multi. Design. 130, 59–68 (2015)
18.
Zurück zum Zitat Akkermans, R.A.D., Bernicke, P., Ewert, R., Dierke, J.: Zonal overset-LES with stochastic volume forcing. Int. J. Heat Fluid Flow 70, 336–47 (2018)CrossRef Akkermans, R.A.D., Bernicke, P., Ewert, R., Dierke, J.: Zonal overset-LES with stochastic volume forcing. Int. J. Heat Fluid Flow 70, 336–47 (2018)CrossRef
19.
Zurück zum Zitat Rossian, L., Fassmann, B.W., Ewert, R., Delfs, J.W., Prediction of porous trailing edge noise reduction using acoustic jump-conditions at porous interfaces. 22nd Aeroacoustics Conference, AIAA Paper 2016–2920, pp. 1–13, 2016 Rossian, L., Fassmann, B.W., Ewert, R., Delfs, J.W., Prediction of porous trailing edge noise reduction using acoustic jump-conditions at porous interfaces. 22nd Aeroacoustics Conference, AIAA Paper 2016–2920, pp. 1–13, 2016
20.
Zurück zum Zitat Rossian, L., Ewert R., and Delfs, J.W., Evaluation of acoustic jump conditions at discontinuous porous interfaces. 23rd Aeroacoustics Conference, AIAA Paper 2017–3505, pp. 1–15, 2017 Rossian, L., Ewert R., and Delfs, J.W., Evaluation of acoustic jump conditions at discontinuous porous interfaces. 23rd Aeroacoustics Conference, AIAA Paper 2017–3505, pp. 1–15, 2017
21.
Zurück zum Zitat Terracol, M.: A zonal RANS/LES approach for noise sources prediction. Flow Turbul. Combust. 77(1–4), 161–84 (2006)CrossRefMATH Terracol, M.: A zonal RANS/LES approach for noise sources prediction. Flow Turbul. Combust. 77(1–4), 161–84 (2006)CrossRefMATH
22.
Zurück zum Zitat Bernicke, P., Akkermans, R.A.D., Ewert, R., Dierke, J.: Acoustic relaxation termfor damping and forcing of waves. AIAA J. 58(5) 2029–41 (2020) Bernicke, P., Akkermans, R.A.D., Ewert, R., Dierke, J.: Acoustic relaxation termfor damping and forcing of waves. AIAA J. 58(5) 2029–41 (2020)
23.
Zurück zum Zitat Pope, S.B.: Turbulent Flows. Cambridge University Press (2000) Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)
24.
Zurück zum Zitat Darcy, H., Bobeck, P.: The Public Fountains of the City of Dijon: Exposition and Application of Principles to Follow and Formulas to Use in Questions of Water Distribution. Kendall/Hunt Publishing Company, Dubuque (2004) Darcy, H., Bobeck, P.: The Public Fountains of the City of Dijon: Exposition and Application of Principles to Follow and Formulas to Use in Questions of Water Distribution. Kendall/Hunt Publishing Company, Dubuque (2004)
25.
Zurück zum Zitat Forchheimer, P.: Wasserbewegung durch Boden. Z. Ver. deutsch Ing. 45, 1781–88 (1901) Forchheimer, P.: Wasserbewegung durch Boden. Z. Ver. deutsch Ing. 45, 1781–88 (1901)
26.
Zurück zum Zitat Breugem, W.P., The Influence of Wall Permeability on Laminar and Turbulent Flows, Dissertation TU Delft, 2005 Breugem, W.P., The Influence of Wall Permeability on Laminar and Turbulent Flows, Dissertation TU Delft, 2005
27.
Zurück zum Zitat Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17(2), 1–15 (2005)CrossRefMATH Breugem, W.P., Boersma, B.J.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17(2), 1–15 (2005)CrossRefMATH
28.
Zurück zum Zitat Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72 (2006)MathSciNetCrossRefMATH Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72 (2006)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Fassmann, B., Rautmann, C., Ewert, R., Delfs, J.W.: Prediction of porous trailing edge noise reduction via acoustic perturbation equations and volume averaging. In: 21th Aeroacoustics Conference, AIAA Paper 2015–2525, pp. 1–18, 2015 Fassmann, B., Rautmann, C., Ewert, R., Delfs, J.W.: Prediction of porous trailing edge noise reduction via acoustic perturbation equations and volume averaging. In: 21th Aeroacoustics Conference, AIAA Paper 2015–2525, pp. 1–18, 2015
30.
Zurück zum Zitat Lippitz, N., Rösler, J.: Analyzing the Structure Evolution of Porous Aluminum During Cold Rolling. MetFoam, Barcelona (2017) Lippitz, N., Rösler, J.: Analyzing the Structure Evolution of Porous Aluminum During Cold Rolling. MetFoam, Barcelona (2017)
31.
Zurück zum Zitat Lippitz, N., Rösler, J.: Modification of porous aluminum by cold rolling for low-noise trailing edge applications. Metals 8(8), 598 (2018)CrossRef Lippitz, N., Rösler, J.: Modification of porous aluminum by cold rolling for low-noise trailing edge applications. Metals 8(8), 598 (2018)CrossRef
32.
Zurück zum Zitat Dhamankar, N.S., Blaisdell, G.A., Lyrintzis, A.S.: Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J. 56(4), 1317–34 (2018)CrossRef Dhamankar, N.S., Blaisdell, G.A., Lyrintzis, A.S.: Overview of turbulent inflow boundary conditions for large-eddy simulations. AIAA J. 56(4), 1317–34 (2018)CrossRef
33.
Zurück zum Zitat Ewert, R.: Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method. Comput. Fluids 37(4), 369–87 (2008)MathSciNetCrossRefMATH Ewert, R.: Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method. Comput. Fluids 37(4), 369–87 (2008)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Bernicke, P., Akkermans, R.A.D., Ewert, R.,Dierke, J.: Overset LES with an Acoustic Relaxation Term for Sound Source Simulations, In: 22th AIAA/CEAS Aeroacoustics Conference, AIAA p. 3031, 1–14, (2016) Bernicke, P., Akkermans, R.A.D., Ewert, R.,Dierke, J.: Overset LES with an Acoustic Relaxation Term for Sound Source Simulations, In: 22th AIAA/CEAS Aeroacoustics Conference, AIAA p. 3031, 1–14, (2016)
35.
Zurück zum Zitat Dawi, A.H., Akkermans, R.A.D.: Spurious noise in direct noise computation with a finite volume method for automotive applications. Int. J. Heat Fluid Flow 72, 243–256 (2018)CrossRef Dawi, A.H., Akkermans, R.A.D.: Spurious noise in direct noise computation with a finite volume method for automotive applications. Int. J. Heat Fluid Flow 72, 243–256 (2018)CrossRef
36.
Zurück zum Zitat Dawi, A.H., Akkermans, R.A.D.: Direct and integral noise computation of two square cylinders in tandem arrangement. J. Sound Vib. 436, 138–154 (2018)CrossRef Dawi, A.H., Akkermans, R.A.D.: Direct and integral noise computation of two square cylinders in tandem arrangement. J. Sound Vib. 436, 138–154 (2018)CrossRef
37.
Zurück zum Zitat Dawi, A.H., Akkermans, R.A.D.: Direct noise computation of a generic vehicle model using a finite volume method. Comput. Fluids 191, 104243 (2019) Dawi, A.H., Akkermans, R.A.D.: Direct noise computation of a generic vehicle model using a finite volume method. Comput. Fluids 191, 104243 (2019)
38.
Zurück zum Zitat Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188(2), 365–98 (2003)MathSciNetCrossRefMATH Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188(2), 365–98 (2003)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Ewert, R., Schröder, W.: On the simulation of trailing edge noise with a hybrid LES/APE method. J. Sound Vib. 270(1), 509–24 (2004)CrossRef Ewert, R., Schröder, W.: On the simulation of trailing edge noise with a hybrid LES/APE method. J. Sound Vib. 270(1), 509–24 (2004)CrossRef
40.
Zurück zum Zitat Ewert, R., Dierke, J., Siebert, J., Neifeld, A., Appel, C., Siefert, M., Kornow, O.: CAA broadband noise prediction for aeroacoustic design. J. Sound Vib. 330(17), 4139–60 (2011)CrossRef Ewert, R., Dierke, J., Siebert, J., Neifeld, A., Appel, C., Siefert, M., Kornow, O.: CAA broadband noise prediction for aeroacoustic design. J. Sound Vib. 330(17), 4139–60 (2011)CrossRef
41.
Zurück zum Zitat Ewert, R., Appel, C., Dierke, J., Herr, M.: RANS/CAA based prediction of NACA0012 broadband trailing edge noise and experimental validation. In: 15th Aeroacoustics Conference, AIAA 2009-3269, 1–31, 2009 Ewert, R., Appel, C., Dierke, J., Herr, M.: RANS/CAA based prediction of NACA0012 broadband trailing edge noise and experimental validation. In: 15th Aeroacoustics Conference, AIAA 2009-3269, 1–31, 2009
42.
Zurück zum Zitat Kato, C., Iida, A., Takano, Y., Fujita, H., Ikegawa, M.: Numerical prediction of 1069 aerodynamic noise radiated from low Mach number turbulent wake. AIAA- 1070, 93–145 (1993) Kato, C., Iida, A., Takano, Y., Fujita, H., Ikegawa, M.: Numerical prediction of 1069 aerodynamic noise radiated from low Mach number turbulent wake. AIAA- 1070, 93–145 (1993)
43.
Zurück zum Zitat Oberai, A.A., Roknaldin, F., Hughes, T.J.R.: Trailing-edge noise due to turbulent flows, Technical Report, Boston University, Report No. 02-002, 2002 Oberai, A.A., Roknaldin, F., Hughes, T.J.R.: Trailing-edge noise due to turbulent flows, Technical Report, Boston University, Report No. 02-002, 2002
44.
Zurück zum Zitat Bernicke, P., Akkermans, R.A.D., Ananthan, V.B., Ewert, R., Dierke, J., Rossian, L.: A zonal noise prediction method for trailing-edge noise with a porous model. Int. J. Heat Fluid Flow 80, 108469 (2019) Bernicke, P., Akkermans, R.A.D., Ananthan, V.B., Ewert, R., Dierke, J., Rossian, L.: A zonal noise prediction method for trailing-edge noise with a porous model. Int. J. Heat Fluid Flow 80, 108469 (2019)
45.
Zurück zum Zitat Delfs, J.: Lecture Notes: Methoden der Aeroakustik (2012) Delfs, J.: Lecture Notes: Methoden der Aeroakustik (2012)
46.
Zurück zum Zitat Rautmann, C.: Numerical simulation concept for low-noise wind turbine rotors. Dissertation, DLR-Forschungsbericht. FB-2017-35, 2017 Rautmann, C.: Numerical simulation concept for low-noise wind turbine rotors. Dissertation, DLR-Forschungsbericht. FB-2017-35, 2017
47.
Zurück zum Zitat Herr, M., Ewert, R., Rautmann, C., Kamruzzaman, M., Bekiropoulos, D., Arina, R., Iob, A., Batten, P., Chakravarthy, S., Bertagnolio, F.: Broadband trailing-edge noise predictions: overview of BANC-III results. In: 21st Aeroacoustics Conference, AIAA-2015-2847, 1–31, 2015 Herr, M., Ewert, R., Rautmann, C., Kamruzzaman, M., Bekiropoulos, D., Arina, R., Iob, A., Batten, P., Chakravarthy, S., Bertagnolio, F.: Broadband trailing-edge noise predictions: overview of BANC-III results. In: 21st Aeroacoustics Conference, AIAA-2015-2847, 1–31, 2015
48.
Zurück zum Zitat Rossian, L., Suryadi, A., Rossignol, K.S., Ewert, R., Herr, M., Delfs, J.W.: Numerical and experimental insights into the noise generation of a circulation control airfoil. In: 24th Aeroacoustics Conference, AIAA 2018-31390, 1–23, 2018 Rossian, L., Suryadi, A., Rossignol, K.S., Ewert, R., Herr, M., Delfs, J.W.: Numerical and experimental insights into the noise generation of a circulation control airfoil. In: 24th Aeroacoustics Conference, AIAA 2018-31390, 1–23, 2018
49.
Zurück zum Zitat Akkermans, R.A.D., Stuermer, A., Delfs, J.W.: Active flow control for interaction noise reduction of contra-rotating open rotors. AIAA J. 54(4), 1413–1423 (2016)CrossRef Akkermans, R.A.D., Stuermer, A., Delfs, J.W.: Active flow control for interaction noise reduction of contra-rotating open rotors. AIAA J. 54(4), 1413–1423 (2016)CrossRef
50.
Zurück zum Zitat Ananthan, V.B., Bernicke, P., Akkermans, R.A.D., Hu, T., Liu, P.: Effect of Porous Material on Trailing Edge Sound Sources of a Lifting Airfoil by Zonal Overset-LES, J. Sound Vib. 480, P. 115386, 1–19 (2020) Ananthan, V.B., Bernicke, P., Akkermans, R.A.D., Hu, T., Liu, P.: Effect of Porous Material on Trailing Edge Sound Sources of a Lifting Airfoil by Zonal Overset-LES, J. Sound Vib. 480, P. 115386, 1–19 (2020)
51.
Metadaten
Titel
Scale-Resolving Simulation of Aeroacoustic Sound from Coanda Flaps
verfasst von
Paul Bernicke
Varun B. Ananthan
Rinie A. D. Akkermans
Jürgen Dierke
Roland Ewert
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-52429-6_32

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.