Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Regular Paper | Ausgabe 3/2015

Knowledge and Information Systems 3/2015

Scaling cut criterion-based discriminant analysis for supervised dimension reduction

Zeitschrift:
Knowledge and Information Systems > Ausgabe 3/2015
Autoren:
Xiangrong Zhang, Yudi He, Licheng Jiao, Ruochen Liu, Jie Feng, Sisi Zhou

Abstract

Dimension reduction has always been a major problem in many applications of machine learning and pattern recognition. In this paper, the scaling cut criterion-based supervised dimension reduction methods for data analysis are proposed. The scaling cut criterion can eliminate the limit of the hypothesis that data distribution of each class is homoscedastic Gaussian. To obtain a more reasonable mapping matrix and reduce the computational complexity, local scaling cut criterion-based dimension reduction is raised, which utilized the localization strategy of the input data. The localized \(k\)-nearest neighbor graph is introduced , which relaxes the within-class variance and enlarges the between-class margin. Moreover, by kernelizing the scaling cut criterion and local scaling cut criterion, both methods are extended to efficiently model the nonlinear variability of the data. Furthermore, the optimal dimension scaling cut criterion is proposed, which can automatically select the optimal dimension for the dimension reduction methods. The approaches have been tested on several datasets, and the results have shown a better and efficient performance compared with other linear and nonlinear dimension reduction techniques.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Knowledge and Information Systems 3/2015 Zur Ausgabe

Premium Partner

    Bildnachweise