Skip to main content

2011 | OriginalPaper | Buchkapitel

15. Scanning Ion Conductance Microscopy

verfasst von : Johannes Rheinlaender, Tilman E. Schäffer

Erschienen in: Scanning Probe Microscopy of Functional Materials

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In 1981, the age of the scanning probe microscopes (SPMs) began when Binnig, Rohrer, and cowokers developed the first scanning tunneling microscope (STM) [1]. Their setup was based on measuring an electrical tunneling current between a sharp metal tip and a conducting sample. For the first time, a sample surface could be imaged with true atomic resolution in real space. The STM launched the development of several other types of SPMs. In general, these microscopes consist of a small, submicrometer probe, which senses a certain physical interaction with the sample and which is scanned over the sample to generate an image. For example, Pohl et al. invented the scanning near-field optical microscope (SNOM) in 1984 [2], which uses an evanescent electromagnetic field in the subwavelength range to image the sample. In 1986, Binnig and co-workers developed the atomic force microscope (AFM), which is based on measuring the mechanical forces between a sharp tip and the sample [3]. The AFM is not limited to conducting or transparent samples and has become one of the most important tools in nanoscale science. The AFM also works in aqueous environments, such as buffer solutions and so is well suited for biological samples [4]. Since then, several related SPMs have been developed, such as the magnetic force microscope [5,6] the electrical force microscope [7], and the scanning electrochemical force microscope (SECM) [8].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Binnig G, Rohrer H (1982) Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49:57–61.CrossRef Binnig G, Rohrer H (1982) Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49:57–61.CrossRef
2.
Zurück zum Zitat Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy:image recording with resolution λ/20. Appl. Phys. Lett. 44(7):651–653.CrossRef Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy:image recording with resolution λ/20. Appl. Phys. Lett. 44(7):651–653.CrossRef
3.
Zurück zum Zitat Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys. Rev. Lett. 56(9):930–933.CrossRef Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys. Rev. Lett. 56(9):930–933.CrossRef
4.
Zurück zum Zitat Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243(4898):1586–1589.CrossRef Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243(4898):1586–1589.CrossRef
5.
Zurück zum Zitat Sáenz JJ, García N, Grütter P, Meyer E, Heinzelmann H, Wiesendanger R, Rosenthaler L, Hidber HR, Güntherodt HJ (1987) Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 62(10):4293–4295.CrossRef Sáenz JJ, García N, Grütter P, Meyer E, Heinzelmann H, Wiesendanger R, Rosenthaler L, Hidber HR, Güntherodt HJ (1987) Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 62(10):4293–4295.CrossRef
6.
Zurück zum Zitat Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000Å resolution. Appl. Phys. Lett. 50(20):1455–1457.CrossRef Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000Å resolution. Appl. Phys. Lett. 50(20):1455–1457.CrossRef
7.
Zurück zum Zitat Martin Y, Abraham DW, Wickramasinghe HK (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52(13):1103–1105.CrossRef Martin Y, Abraham DW, Wickramasinghe HK (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52(13):1103–1105.CrossRef
8.
Zurück zum Zitat Bard AJ, Fan F-RF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61(2):132–138.CrossRef Bard AJ, Fan F-RF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61(2):132–138.CrossRef
9.
Zurück zum Zitat Prater CB, Drake B, Gould SAC, Hansma HG, Hansma PK (1990) Scanning ion-conductance microscope and atomic force microscope. Scanning 12(1):50–52. Prater CB, Drake B, Gould SAC, Hansma HG, Hansma PK (1990) Scanning ion-conductance microscope and atomic force microscope. Scanning 12(1):50–52.
10.
Zurück zum Zitat Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) The scanning ion-conductance microscope. Science 243(4891):641–643.CrossRef Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) The scanning ion-conductance microscope. Science 243(4891):641–643.CrossRef
11.
Zurück zum Zitat Korchev YE, Milovanovic M, Bashford CL, Bennett DC, Sviderskaya EV, Vodyanoy I, Lab MJ (1997) Specialized scanning ion-conductance microscope for imaging of living cells. J. Microsc. 188(Pt 1):17–23.CrossRef Korchev YE, Milovanovic M, Bashford CL, Bennett DC, Sviderskaya EV, Vodyanoy I, Lab MJ (1997) Specialized scanning ion-conductance microscope for imaging of living cells. J. Microsc. 188(Pt 1):17–23.CrossRef
12.
Zurück zum Zitat Nitz H, Kamp J, Fuchs H (1998) A combined scanning ion-conductance and shear-force microscope. Probe Microscopy 1:187–200. Nitz H, Kamp J, Fuchs H (1998) A combined scanning ion-conductance and shear-force microscope. Probe Microscopy 1:187–200.
13.
Zurück zum Zitat Olin H (1994) Design of a scanning probe microscope. Meas. Sci. Technol. 5:976–984.CrossRef Olin H (1994) Design of a scanning probe microscope. Meas. Sci. Technol. 5:976–984.CrossRef
14.
Zurück zum Zitat Pastré D, Iwamoto H, Liu J, Szabo G, Shao Z (2001) Characterization of AC mode scanning ion-conductance microscopy. Ultramicroscopy 90(1):13–19.CrossRef Pastré D, Iwamoto H, Liu J, Szabo G, Shao Z (2001) Characterization of AC mode scanning ion-conductance microscopy. Ultramicroscopy 90(1):13–19.CrossRef
15.
Zurück zum Zitat Proksch R, Lal R, Hansma PK, Morse D, Stucky G (1996) Imaging the internal and external pore structure of membranes in fluid:tapping mode scanning ion conductance microscopy. Biophys. J. 71(4):2155–2157.CrossRef Proksch R, Lal R, Hansma PK, Morse D, Stucky G (1996) Imaging the internal and external pore structure of membranes in fluid:tapping mode scanning ion conductance microscopy. Biophys. J. 71(4):2155–2157.CrossRef
16.
Zurück zum Zitat Schäffer TE, Ionescu-Zanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9(8):1731–1740.CrossRef Schäffer TE, Ionescu-Zanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9(8):1731–1740.CrossRef
17.
Zurück zum Zitat Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE (2001) Simultaneous measurement of Ca2+ and cellular dynamics:combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes. Biophys. J. 81(3):1759–1764.CrossRef Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE (2001) Simultaneous measurement of Ca2+ and cellular dynamics:combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes. Biophys. J. 81(3):1759–1764.CrossRef
18.
Zurück zum Zitat Rheinlaender J, Schäffer TE (2009) Image formation, resolution, and height measurement in scanning ion conductance microscopy. J. Appl. Phys. 105(9):094905.CrossRef Rheinlaender J, Schäffer TE (2009) Image formation, resolution, and height measurement in scanning ion conductance microscopy. J. Appl. Phys. 105(9):094905.CrossRef
19.
Zurück zum Zitat Böcker M, Muschter S, Schmitt EK, Steinem C, Schäffer TE (2009) Imaging and patterning of pore-suspending membranes with scanning ion conductance microscopy. Langmuir 25(5):3022–3028.CrossRef Böcker M, Muschter S, Schmitt EK, Steinem C, Schäffer TE (2009) Imaging and patterning of pore-suspending membranes with scanning ion conductance microscopy. Langmuir 25(5):3022–3028.CrossRef
20.
Zurück zum Zitat Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys. J. 73(2):653–658.CrossRef Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys. J. 73(2):653–658.CrossRef
21.
Zurück zum Zitat Böcker M, Anczykowski B, Wegener J, Schäffer TE (2007) Scanning ion conductance microscopy with distance-modulated shear force control. Nanotechnology 18(14):145505–145506.CrossRef Böcker M, Anczykowski B, Wegener J, Schäffer TE (2007) Scanning ion conductance microscopy with distance-modulated shear force control. Nanotechnology 18(14):145505–145506.CrossRef
22.
Zurück zum Zitat Korchev YE, Raval M, Lab MJ, Gorelik J, Edwards CR, Rayment T, Klenerman D (2000) Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells. Biophys. J. 78(5):2675–2679.CrossRef Korchev YE, Raval M, Lab MJ, Gorelik J, Edwards CR, Rayment T, Klenerman D (2000) Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells. Biophys. J. 78(5):2675–2679.CrossRef
23.
Zurück zum Zitat Mannelquist A, Iwamoto H, Szabo G, Shao Z (2001) Near-field optical microscopy with a vibrating probe in aqueous solution. Appl. Phys. Lett. 78(14):2076–2078.CrossRef Mannelquist A, Iwamoto H, Szabo G, Shao Z (2001) Near-field optical microscopy with a vibrating probe in aqueous solution. Appl. Phys. Lett. 78(14):2076–2078.CrossRef
24.
Zurück zum Zitat Mannelquist A, Iwamoto H, Szabo G, Shao Z (2002) Near field optical microscopy in aqueous solution:implementation and characterization of a vibrating probe. J. Microsc. 205(Pt 1):53–60.CrossRef Mannelquist A, Iwamoto H, Szabo G, Shao Z (2002) Near field optical microscopy in aqueous solution:implementation and characterization of a vibrating probe. J. Microsc. 205(Pt 1):53–60.CrossRef
25.
Zurück zum Zitat Shevchuk AI, Frolenkov GI, Sanchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE (2006) Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew. Chem. Int. Ed. Engl. 45(14):2212–2216.CrossRef Shevchuk AI, Frolenkov GI, Sanchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE (2006) Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew. Chem. Int. Ed. Engl. 45(14):2212–2216.CrossRef
26.
Zurück zum Zitat Bockris JO, Reddy AKN, Modern Electrochemistry:Electrodics in Chemistry, Engineering, Biology, and Environmental Science. 2000, New York:Plenum Publishing Corporation. Bockris JO, Reddy AKN, Modern Electrochemistry:Electrodics in Chemistry, Engineering, Biology, and Environmental Science. 2000, New York:Plenum Publishing Corporation.
27.
Zurück zum Zitat Bruus H, Theoretical Microfluidics. Oxford Master Series in Physics. 2007, New York:Oxford University Press. Bruus H, Theoretical Microfluidics. Oxford Master Series in Physics. 2007, New York:Oxford University Press.
28.
Zurück zum Zitat Brown KT, Flaming DG, Advanced Micropipette Techniques for Cell Physiology. 1986, New York:Wiley. Brown KT, Flaming DG, Advanced Micropipette Techniques for Cell Physiology. 1986, New York:Wiley.
29.
Zurück zum Zitat Ying LM, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D (2002) Programmable delivery of DNA through a nanopipette. Anal. Chem. 74(6):1380–1385.CrossRef Ying LM, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D (2002) Programmable delivery of DNA through a nanopipette. Anal. Chem. 74(6):1380–1385.CrossRef
30.
Zurück zum Zitat Ying L, White SS, Bruckbauer A, Meadows L, Korchev YE, Klenerman D (2004) Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette. Biophys. J. 86(2):1018–1027.CrossRef Ying L, White SS, Bruckbauer A, Meadows L, Korchev YE, Klenerman D (2004) Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette. Biophys. J. 86(2):1018–1027.CrossRef
31.
Zurück zum Zitat Hall JE (1975) Access resistance of a small circular pore. J. Gen. Physiol. 66:531–532.CrossRef Hall JE (1975) Access resistance of a small circular pore. J. Gen. Physiol. 66:531–532.CrossRef
32.
Zurück zum Zitat COMSOL, COMSOL Multiphysics. 2007, Stockholm, Sweden:COMSOL AB. COMSOL, COMSOL Multiphysics. 2007, Stockholm, Sweden:COMSOL AB.
33.
Zurück zum Zitat Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CR (2000) Cell volume measurement using scanning ion conductance microscopy. Biophys. J. 78(1):451–457.CrossRef Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CR (2000) Cell volume measurement using scanning ion conductance microscopy. Biophys. J. 78(1):451–457.CrossRef
34.
Zurück zum Zitat Korchev YE, Negulyaev YA, Edwards CR, Vodyanoy I, Lab MJ (2000) Functional localization of single active ion channels on the surface of a living cell. Nat. Cell. Biol. 2(9):616–619.CrossRef Korchev YE, Negulyaev YA, Edwards CR, Vodyanoy I, Lab MJ (2000) Functional localization of single active ion channels on the surface of a living cell. Nat. Cell. Biol. 2(9):616–619.CrossRef
35.
Zurück zum Zitat Gitter AH, Bertog M, Schulzke J-D, Fromm M (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Eur. J. Physiol. 434(6):830–840.CrossRef Gitter AH, Bertog M, Schulzke J-D, Fromm M (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Eur. J. Physiol. 434(6):830–840.CrossRef
36.
Zurück zum Zitat Mann SA, Hoffmann G, Hengstenberg A, Schuhmann W, Dietzel ID (2002) Pulse-mode scanning ion conductance microscopy – a method to investigate cultured hippocampal cells. J. Neurosci. Methods 116(2):113–117.CrossRef Mann SA, Hoffmann G, Hengstenberg A, Schuhmann W, Dietzel ID (2002) Pulse-mode scanning ion conductance microscopy – a method to investigate cultured hippocampal cells. J. Neurosci. Methods 116(2):113–117.CrossRef
37.
Zurück zum Zitat Happel P, Hoffmann G, Mann SA, Dietzel ID (2003) Monitoring cell movements and volume changes with pulse-mode scanning ion conductance microscopy. J. Microsc. 212(Pt 2):144–151.CrossRef Happel P, Hoffmann G, Mann SA, Dietzel ID (2003) Monitoring cell movements and volume changes with pulse-mode scanning ion conductance microscopy. J. Microsc. 212(Pt 2):144–151.CrossRef
38.
Zurück zum Zitat Beveridge TJ, Southam G, Jericho MH, Blackford BL (1990) High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. J. Bacteriol. 172(11):6589–6595. Beveridge TJ, Southam G, Jericho MH, Blackford BL (1990) High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. J. Bacteriol. 172(11):6589–6595.
39.
Zurück zum Zitat Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophys. J. 66(6):2159–2165.CrossRef Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophys. J. 66(6):2159–2165.CrossRef
40.
Zurück zum Zitat Borgwarth K, Ebling DG, Heinze J (1994) Scanning electrochemical microscopy:a new scanning mode based on convective effects. Ber. Bunsenges. Phys. Chem. 98(10):1317–1321. Borgwarth K, Ebling DG, Heinze J (1994) Scanning electrochemical microscopy:a new scanning mode based on convective effects. Ber. Bunsenges. Phys. Chem. 98(10):1317–1321.
41.
Zurück zum Zitat Novak P, Li C, Shevshuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GWJ, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6:279–281.CrossRef Novak P, Li C, Shevshuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GWJ, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6:279–281.CrossRef
42.
Zurück zum Zitat Gorelik J, Gu Y, Spohr HA, Shevchuk AI, Lab MJ, Harding SE, Edwards CR, Whitaker M, Moss GW, Benton DC, Sanchez D, Darszon A, Vodyanoy I, Klenerman D, Korchev YE (2002) Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys. J. 83(6):3296–303.CrossRef Gorelik J, Gu Y, Spohr HA, Shevchuk AI, Lab MJ, Harding SE, Edwards CR, Whitaker M, Moss GW, Benton DC, Sanchez D, Darszon A, Vodyanoy I, Klenerman D, Korchev YE (2002) Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys. J. 83(6):3296–303.CrossRef
43.
Zurück zum Zitat Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, Richardson GP, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2003) Dynamic assembly of surface structures in living cells. Proc. Natl Acad. Sci. USA 100(10):5819–5822.CrossRef Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, Richardson GP, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2003) Dynamic assembly of surface structures in living cells. Proc. Natl Acad. Sci. USA 100(10):5819–5822.CrossRef
44.
Zurück zum Zitat Gorelik J, Zhang A, Shevchuk A, Frolenkov GI, Sanchez D, Lab MJ, Vodyanoy I, W ECR, Klenerman D, Korchev YE (2002) The use of scanning ion conductance microscopy to image A6 cells. Mol. Cell. Endocrinol. 217:101–108.CrossRef Gorelik J, Zhang A, Shevchuk A, Frolenkov GI, Sanchez D, Lab MJ, Vodyanoy I, W ECR, Klenerman D, Korchev YE (2002) The use of scanning ion conductance microscopy to image A6 cells. Mol. Cell. Endocrinol. 217:101–108.CrossRef
45.
Zurück zum Zitat Bruckbauer A, Ying LM, Rothery AM, Korchev YE, Klenerman D (2002) Characterization of a novel light source for simultaneous optical and scanning ion conductance microscopy. Anal. Chem. 74(11):2612–2616.CrossRef Bruckbauer A, Ying LM, Rothery AM, Korchev YE, Klenerman D (2002) Characterization of a novel light source for simultaneous optical and scanning ion conductance microscopy. Anal. Chem. 74(11):2612–2616.CrossRef
46.
Zurück zum Zitat Rothery AM, Gorelik J, Bruckbauer A, Yu W, Korchev YE, Klenerman D (2003) A novel light source for SICM-SNOM of living cells. J. Microsc. 209:94–101.CrossRef Rothery AM, Gorelik J, Bruckbauer A, Yu W, Korchev YE, Klenerman D (2003) A novel light source for SICM-SNOM of living cells. J. Microsc. 209:94–101.CrossRef
47.
Zurück zum Zitat Gorelik J, Shevchuk AI, Ramalho M, Elliott M, Lei C, Higgins CF, Lab MJ, Klenerman D, Krauzewicz N, Korchev YE (2002) Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging:application to single virus-like particle entry into a cell. Proc. Natl Acad. Sci. USA 99(25):16018–16023.CrossRef Gorelik J, Shevchuk AI, Ramalho M, Elliott M, Lei C, Higgins CF, Lab MJ, Klenerman D, Krauzewicz N, Korchev YE (2002) Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging:application to single virus-like particle entry into a cell. Proc. Natl Acad. Sci. USA 99(25):16018–16023.CrossRef
48.
Zurück zum Zitat Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Ammann E (2003) Near-field optics:from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21(11):1377–1386.CrossRef Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Ammann E (2003) Near-field optics:from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21(11):1377–1386.CrossRef
49.
Zurück zum Zitat Shalom S, Lieberman K, Lewis A, Cohen SR (1992) A micropipette force probe suitable for near-field scanning optical microscopy. Rev. Sci. Instrum. 63(9):4061–4065.CrossRef Shalom S, Lieberman K, Lewis A, Cohen SR (1992) A micropipette force probe suitable for near-field scanning optical microscopy. Rev. Sci. Instrum. 63(9):4061–4065.CrossRef
50.
Zurück zum Zitat Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64(13):1738–1740.CrossRef Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64(13):1738–1740.CrossRef
51.
Zurück zum Zitat Putman CAJ, Van der Werf KO, Grooth BGD, Hulst NFV, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64(18):2454–2456.CrossRef Putman CAJ, Van der Werf KO, Grooth BGD, Hulst NFV, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64(18):2454–2456.CrossRef
52.
Zurück zum Zitat Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier:optical microscopy on a nanometric scale. Science 5000:1468–1470.CrossRef Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier:optical microscopy on a nanometric scale. Science 5000:1468–1470.CrossRef
53.
Zurück zum Zitat Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Near-field differential scanning optical microscope with atomic force regulation. Appl. Phys. Lett. 60:2957–2959.CrossRef Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Near-field differential scanning optical microscope with atomic force regulation. Appl. Phys. Lett. 60:2957–2959.CrossRef
54.
Zurück zum Zitat Betzig E, Finn PL, Weiner JS (1992) Combined shear force and near-field scanning optical microscopy. Appl. Phys. Lett. 60(20):2484–2486.CrossRef Betzig E, Finn PL, Weiner JS (1992) Combined shear force and near-field scanning optical microscopy. Appl. Phys. Lett. 60(20):2484–2486.CrossRef
55.
Zurück zum Zitat Karrai K, Grober RD (1995) Piezoelectric tip-sample distance control for near-field optical microscopes. Appl. Phys. Lett. 66(14):1842–1844.CrossRef Karrai K, Grober RD (1995) Piezoelectric tip-sample distance control for near-field optical microscopes. Appl. Phys. Lett. 66(14):1842–1844.CrossRef
56.
Zurück zum Zitat Brunner R, Hering O, Marti O, Hollricher O (1997) Piezoelectrical shear-force control on soft biological samples in aqueous solution. Appl. Phys. Lett. 71(25):3628–3630.CrossRef Brunner R, Hering O, Marti O, Hollricher O (1997) Piezoelectrical shear-force control on soft biological samples in aqueous solution. Appl. Phys. Lett. 71(25):3628–3630.CrossRef
57.
Zurück zum Zitat Koopman M, de Bakker BI, Garcia-Parajo MF, van Hulst NF (2003) Shear force imaging of soft samples in liquid using a diving bell concept. Appl. Phys. Lett. 83(24):5083–5085.CrossRef Koopman M, de Bakker BI, Garcia-Parajo MF, van Hulst NF (2003) Shear force imaging of soft samples in liquid using a diving bell concept. Appl. Phys. Lett. 83(24):5083–5085.CrossRef
58.
Zurück zum Zitat Rensen WHJ, van Hulst NF, Kammer SB (2000) Imaging soft samples in liquid with tuning fork based shear force microscopy. Appl. Phys. Lett. 77(10):1557–1559.CrossRef Rensen WHJ, van Hulst NF, Kammer SB (2000) Imaging soft samples in liquid with tuning fork based shear force microscopy. Appl. Phys. Lett. 77(10):1557–1559.CrossRef
59.
Zurück zum Zitat Sánchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Anand U, Praveen A, Gorelik J, Frolenkov G, Benham C, Lab M, Ostanin V, Schäffer TE, Klenerman D, Korchev YE (2008) Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette. Biophys. J. 95(6):3017–3027.CrossRef Sánchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Anand U, Praveen A, Gorelik J, Frolenkov G, Benham C, Lab M, Ostanin V, Schäffer TE, Klenerman D, Korchev YE (2008) Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette. Biophys. J. 95(6):3017–3027.CrossRef
60.
Zurück zum Zitat Lewis A, Kheifetz Y, Shambrodt E, Radko A, Khatchatryan E (1999) Fountain pen nanochemistry:atomic force control of chrome etching. Appl. Phys. Lett. 75(17):2689–2691.CrossRef Lewis A, Kheifetz Y, Shambrodt E, Radko A, Khatchatryan E (1999) Fountain pen nanochemistry:atomic force control of chrome etching. Appl. Phys. Lett. 75(17):2689–2691.CrossRef
61.
Zurück zum Zitat Müller A-D, Müller F, Hietschold M (1998) Electrochemical pattern formation in a scanning near-field optical microscope. Appl. Phys. A 66:453–456.CrossRef Müller A-D, Müller F, Hietschold M (1998) Electrochemical pattern formation in a scanning near-field optical microscope. Appl. Phys. A 66:453–456.CrossRef
62.
Zurück zum Zitat Müller A-D, Müller F, Hietschold M (2000) Localized electrochemical deposition of metals using micropipettes. Thin Solid Films 366:32–36.CrossRef Müller A-D, Müller F, Hietschold M (2000) Localized electrochemical deposition of metals using micropipettes. Thin Solid Films 366:32–36.CrossRef
63.
Zurück zum Zitat Zhang H, Wu L, Huang F (1999) Electrochemical microprocess by scanning ionconductance microscopy. J. Vac. Sci. Technol. B 17(2):269–272.CrossRef Zhang H, Wu L, Huang F (1999) Electrochemical microprocess by scanning ionconductance microscopy. J. Vac. Sci. Technol. B 17(2):269–272.CrossRef
64.
Zurück zum Zitat Hong M-H, Kim KH, Bae J, Jhe W (2000) Scanning nanolithography using a material-filled nanopipette. Appl. Phys. Lett. 77(16):2604–2606.CrossRef Hong M-H, Kim KH, Bae J, Jhe W (2000) Scanning nanolithography using a material-filled nanopipette. Appl. Phys. Lett. 77(16):2604–2606.CrossRef
65.
Zurück zum Zitat Larson BJ, Gillmor SD, Lagally MG (2004) Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Rev. Sci. Instrum. 75(4):832–836.CrossRef Larson BJ, Gillmor SD, Lagally MG (2004) Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Rev. Sci. Instrum. 75(4):832–836.CrossRef
66.
Zurück zum Zitat Rodolfa KT, Bruckbauer A, Zhou D, Korchev YE, Klenerman D (2005) Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew. Chem. 117(42):7014–7019.CrossRef Rodolfa KT, Bruckbauer A, Zhou D, Korchev YE, Klenerman D (2005) Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew. Chem. 117(42):7014–7019.CrossRef
67.
Zurück zum Zitat Bruckbauer A, Zhou D, Ying L, Korchev Y, Abell C, Klenerman D (2003) Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc. 125:9834–9839.CrossRef Bruckbauer A, Zhou D, Ying L, Korchev Y, Abell C, Klenerman D (2003) Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc. 125:9834–9839.CrossRef
68.
Zurück zum Zitat Taha H, Marks RS, Levi AG, Rousso I, Newman J, Sukenik C, Lewis A (2003) Protein printing with an atomic force sensing nanofountainpen. Appl. Phys. Lett. 83(5):1041–1043.CrossRef Taha H, Marks RS, Levi AG, Rousso I, Newman J, Sukenik C, Lewis A (2003) Protein ­printing with an atomic force sensing nanofountainpen. Appl. Phys. Lett. 83(5):1041–1043.CrossRef
69.
Zurück zum Zitat Schrlau MG, Falls EM, Ziober BL, Bau HM (2008) Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008(1):015101–015105.CrossRef Schrlau MG, Falls EM, Ziober BL, Bau HM (2008) Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008(1):015101–015105.CrossRef
70.
Zurück zum Zitat Laforge FO, Carpino J, Rotenberg SA, Mirkin MV (2007) Electrochemical attosyringe. Proc. Natl Acad. Sci. USA 104(29):11895–11900.CrossRef Laforge FO, Carpino J, Rotenberg SA, Mirkin MV (2007) Electrochemical attosyringe. Proc. Natl Acad. Sci. USA 104(29):11895–11900.CrossRef
71.
Zurück zum Zitat Krishnamurthy V, Luk KY, Cornell B, Prashar J, di Maio IL, Islam H, Battle AR, Valenzuela SM, Martin DK (2007) Gramicidin ion channel-based biosensors:construction, stochastic dynamical models, and statistical detection algorithms. IEEE Sen. J. 7(9):1281–1288.CrossRef Krishnamurthy V, Luk KY, Cornell B, Prashar J, di Maio IL, Islam H, Battle AR, Valenzuela SM, Martin DK (2007) Gramicidin ion channel-based biosensors:construction, stochastic dynamical models, and statistical detection algorithms. IEEE Sen. J. 7(9):1281–1288.CrossRef
72.
Zurück zum Zitat Piper JD, Clarke RW, Korchev YE, Ying L, Klenerman D (2006) A renewable nanosensor based on a glass nanopipette. J. Am. Chem. Soc. 128(51):16462–16463.CrossRef Piper JD, Clarke RW, Korchev YE, Ying L, Klenerman D (2006) A renewable nanosensor based on a glass nanopipette. J. Am. Chem. Soc. 128(51):16462–16463.CrossRef
Metadaten
Titel
Scanning Ion Conductance Microscopy
verfasst von
Johannes Rheinlaender
Tilman E. Schäffer
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-7167-8_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.