2020 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Data Science
In any information technology enterprise, resource allocation and project scheduling are two important issues to reduce project duration, cost and risk in multi-project environments. This paper proposes an integrated and efficient computational method based on multi-objective particle swarm optimization to solve these two interdependent problems simultaneously. Minimizing the project duration, cost and maximizing the quality of resource allocation are all considered in our approach. Moreover, we suggest a novel non-dominated sorting vector evaluated particle swarm optimization (NSVEPSO). In order to improve its efficiency, this algorithm first uses a novel method for setting the global best position, and then executes a non-dominated sorting process to select new population. The performance of NSVEPSO is evaluated by comparison with SWTC_NSPSO, VEPSO and NSGA-III. The results of four experiments in the real scenario with small, medium and large data sizes show that NSVEPSO provides better boundary solutions and costs less time than the other algorithms.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Alba, E., Chicano, J.F.: Software project management with GAs. Inf. Sci. 177(11), 2380–2401 (2007) CrossRef Alba, E., Chicano, J.F.: Software project management with GAs. Inf. Sci.
177(11), 2380–2401 (2007)
CrossRef
2.
Zurück zum Zitat Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014) CrossRef Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput.
18(4), 577–601 (2014)
CrossRef
3.
Zurück zum Zitat Koulinas, G., Kotsikas, L., Konstantinos, A.: A particle swarm optimization-based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Inf. Sci. 277(1), 680–693 (2014) CrossRef Koulinas, G., Kotsikas, L., Konstantinos, A.: A particle swarm optimization-based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Inf. Sci.
277(1), 680–693 (2014)
CrossRef
4.
Zurück zum Zitat Man-Im, A., Ongsakul, W., Singh, J.G.: Multi-objective economic dispatch considering wind power penetration using stochastic weight trade-off chaotic NSPSO. Electr. Power Energy Syst. 45(4), 1–18 (2017) Man-Im, A., Ongsakul, W., Singh, J.G.: Multi-objective economic dispatch considering wind power penetration using stochastic weight trade-off chaotic NSPSO. Electr. Power Energy Syst.
45(4), 1–18 (2017)
5.
Zurück zum Zitat Omkar, S., Mudigere, D., Naik, G.N., Gopalakrishnan, S.: Vector evaluated particle swarm optimization (VEPSO) for multiobjective design optimization of composite structures. Comput. Struct. 86(1–2), 1–14 (2008) CrossRef Omkar, S., Mudigere, D., Naik, G.N., Gopalakrishnan, S.: Vector evaluated particle swarm optimization (VEPSO) for multiobjective design optimization of composite structures. Comput. Struct.
86(1–2), 1–14 (2008)
CrossRef
6.
Zurück zum Zitat Otero, L.D., Centeno, G., Ruiz-Torres, A.J.: A systematic approach for resource allocation in software projects. Comput. Ind. Eng. 56(4), 1333–1339 (2009) CrossRef Otero, L.D., Centeno, G., Ruiz-Torres, A.J.: A systematic approach for resource allocation in software projects. Comput. Ind. Eng.
56(4), 1333–1339 (2009)
CrossRef
7.
Zurück zum Zitat Sedighizadeh, M., Faramarzi, H., Mahmoodi, M.: Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA2 algorithms in fussy framework. Electrical Power and Energy Systems 62(4), 586–598 (2014) CrossRef Sedighizadeh, M., Faramarzi, H., Mahmoodi, M.: Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA2 algorithms in fussy framework. Electrical Power and Energy Systems
62(4), 586–598 (2014)
CrossRef
- Titel
- Scheduling Multi-objective IT Projects and Human Resource Allocation by NSVEPSO
- DOI
- https://doi.org/10.1007/978-981-15-2810-1_2
- Autoren:
-
Yan Guo
Haolan Zhang
Chaoyi Pang
- Verlag
- Springer Singapore
- Sequenznummer
- 2