Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

Search-Based Motion Planning for Performance Autonomous Driving

verfasst von: Zlatan Ajanovic, Enrico Regolin, Georg Stettinger, Martin Horn, Antonella Ferrara

Erschienen in: Advances in Dynamics of Vehicles on Roads and Tracks

Verlag: Springer International Publishing

share
TEILEN

Abstract

Driving on the limits of vehicle dynamics requires predictive planning of future vehicle states. In this work, a search-based motion planning is used to generate suitable reference trajectories of dynamic vehicle states with the goal to achieve the minimum lap time on slippery roads. The search-based approach enables to explicitly consider a nonlinear vehicle dynamics model as well as constraints on states and inputs so that even challenging scenarios can be achieved in a safe and optimal way. The algorithm performance is evaluated in simulated driving on a track with segments of different curvatures. Our code is available at https://​git.​io/​JenvB.
Literatur
1.
Zurück zum Zitat Liniger, A., Domahidi, A., Morari, M.: Optimization-based autonomous racing of 1:43 scale RC cars. Optimal Control Appl. Methods 36(5), 628–647 (2015) MathSciNetCrossRef Liniger, A., Domahidi, A., Morari, M.: Optimization-based autonomous racing of 1:43 scale RC cars. Optimal Control Appl. Methods 36(5), 628–647 (2015) MathSciNetCrossRef
2.
Zurück zum Zitat Liniger, A., Lygeros, J.: A noncooperative game approach to autonomous racing. IEEE Trans. Control Syst. Technol. 1–14 (2019) Liniger, A., Lygeros, J.: A noncooperative game approach to autonomous racing. IEEE Trans. Control Syst. Technol. 1–14 (2019)
3.
Zurück zum Zitat Kolter, J.Z., Plagemann, C., Jackson, D.T., Ng, A.Y., Thrun, S.: A probabilistic approach to mixed open-loop and closed-loop control, with application to extreme autonomous driving. In: 2010 IEEE International Conference on Robotics and Automation, pp. 839–845. IEEE (2010) Kolter, J.Z., Plagemann, C., Jackson, D.T., Ng, A.Y., Thrun, S.: A probabilistic approach to mixed open-loop and closed-loop control, with application to extreme autonomous driving. In: 2010 IEEE International Conference on Robotics and Automation, pp. 839–845. IEEE (2010)
4.
Zurück zum Zitat Velenis, E., Tsiotras, P., Lu, J.: Modeling aggressive maneuvers on loose surfaces: the cases of trail-braking and pendulum-turn. In: ECC, pp. 1233–1240. IEEE (2007) Velenis, E., Tsiotras, P., Lu, J.: Modeling aggressive maneuvers on loose surfaces: the cases of trail-braking and pendulum-turn. In: ECC, pp. 1233–1240. IEEE (2007)
5.
Zurück zum Zitat Velenis, E., Tsiotras, P., Lu, J.: Optimality properties and driver input parameterization for trail-braking cornering. Eur. J. Control 14(4), 308–320 (2008) CrossRef Velenis, E., Tsiotras, P., Lu, J.: Optimality properties and driver input parameterization for trail-braking cornering. Eur. J. Control 14(4), 308–320 (2008) CrossRef
6.
Zurück zum Zitat Tavernini, D., Massaro, M., Velenis, E., Katzourakis, D.I., Lot, R.: Minimum time cornering: the effect of road surface and car transmission layout. Veh. Syst. Dyn. 51(10), 1533–1547 (2013) CrossRef Tavernini, D., Massaro, M., Velenis, E., Katzourakis, D.I., Lot, R.: Minimum time cornering: the effect of road surface and car transmission layout. Veh. Syst. Dyn. 51(10), 1533–1547 (2013) CrossRef
7.
Zurück zum Zitat You, C., Tsiotras, P.: Real-time trail-braking maneuver generation for off-road vehicle racing. In: 2018 Annual American Control Conference (ACC), pp. 4751–4756. IEEE (2018) You, C., Tsiotras, P.: Real-time trail-braking maneuver generation for off-road vehicle racing. In: 2018 Annual American Control Conference (ACC), pp. 4751–4756. IEEE (2018)
8.
Zurück zum Zitat Zhang, F., Gonzales, J., Li, S.E., Borrelli, F., Li, K.: Drift control for cornering maneuver of autonomous vehicles. Mechatronics 54, 167–174 (2018) CrossRef Zhang, F., Gonzales, J., Li, S.E., Borrelli, F., Li, K.: Drift control for cornering maneuver of autonomous vehicles. Mechatronics 54, 167–174 (2018) CrossRef
9.
Zurück zum Zitat Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M., Boots, B., Theodorou, E.A.: Information theoretic MPC for model-based reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721, May 2017 Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M., Boots, B., Theodorou, E.A.: Information theoretic MPC for model-based reinforcement learning. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721, May 2017
10.
Zurück zum Zitat Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., Horn, M.: Search-based optimal motion planning for automated driving. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4523–4530. IEEE (2018) Ajanovic, Z., Lacevic, B., Shyrokau, B., Stolz, M., Horn, M.: Search-based optimal motion planning for automated driving. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4523–4530. IEEE (2018)
11.
Zurück zum Zitat Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p. 7166 (2008) Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.: Motion planning in complex environments using closed-loop prediction. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p. 7166 (2008)
12.
Zurück zum Zitat Regolin, E., Zambelli, M., Ferrara, A.: A multi-rate ISM approach for robust vehicle stability control during cornering. IFAC-PapersOnLine 51(9), 249–254 (2018) CrossRef Regolin, E., Zambelli, M., Ferrara, A.: A multi-rate ISM approach for robust vehicle stability control during cornering. IFAC-PapersOnLine 51(9), 249–254 (2018) CrossRef
13.
Zurück zum Zitat Regolin, E., Vazquez, A.G.A., Zambelli, M., Victorino, A., Charara, A., Ferrara, A.: A sliding mode virtual sensor for wheel forces estimation with accuracy enhancement via EKF. IEEE Trans. Veh. Technol. 68(4), 3457–3471 (2019) CrossRef Regolin, E., Vazquez, A.G.A., Zambelli, M., Victorino, A., Charara, A., Ferrara, A.: A sliding mode virtual sensor for wheel forces estimation with accuracy enhancement via EKF. IEEE Trans. Veh. Technol. 68(4), 3457–3471 (2019) CrossRef
14.
Zurück zum Zitat Genta, G.: Motor Vehicle Dynamics: Modeling and Simulation, vol. 43. World Scientific, Singapore (1997) CrossRef Genta, G.: Motor Vehicle Dynamics: Modeling and Simulation, vol. 43. World Scientific, Singapore (1997) CrossRef
15.
Zurück zum Zitat Velenis, E., Katzourakis, D., Frazzoli, E., Tsiotras, P., Happee, R.: Steady-state drifting stabilization of RWD vehicles. Control Eng. Pract. 19(11), 1363–1376 (2011) CrossRef Velenis, E., Katzourakis, D., Frazzoli, E., Tsiotras, P., Happee, R.: Steady-state drifting stabilization of RWD vehicles. Control Eng. Pract. 19(11), 1363–1376 (2011) CrossRef
16.
Zurück zum Zitat Pacejka, H.: Tire and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2012) Pacejka, H.: Tire and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2012)
17.
Zurück zum Zitat Werling, M., Kammel, S., Ziegler, J., Gröll, L.: Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int. J. Robot. Res. 31(3), 346–359 (2012) CrossRef Werling, M., Kammel, S., Ziegler, J., Gröll, L.: Optimal trajectories for time-critical street scenarios using discretized terminal manifolds. Int. J. Robot. Res. 31(3), 346–359 (2012) CrossRef
18.
Zurück zum Zitat Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968) CrossRef Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968) CrossRef
19.
Zurück zum Zitat Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008) CrossRef Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008) CrossRef
20.
Zurück zum Zitat Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for Bertha — a local, continuous method. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, 8–11 June 2014, pp. 450–457. IEEE (2014) Ziegler, J., Bender, P., Dang, T., Stiller, C.: Trajectory planning for Bertha — a local, continuous method. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, 8–11 June 2014, pp. 450–457. IEEE (2014)
Metadaten
Titel
Search-Based Motion Planning for Performance Autonomous Driving
verfasst von
Zlatan Ajanovic
Enrico Regolin
Georg Stettinger
Martin Horn
Antonella Ferrara
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-38077-9_134

Stellenausschreibungen

Anzeige

Premium Partner