Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2014

01.03.2014

Second- and Third-Order Elastic Constants of Filaments of HexTow® IM7 Carbon Fiber

verfasst von: L. Oliveira, D. Hitchcock, H. Behlow, R. Podila, M. J. Skove, S. M. Serkiz, A. M. Rao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single filaments of HexTow® IM7-12K carbon fiber were subjected to tensile measurements on a device which applies a known stress σ, and measures the resulting strain ε, and the change in resistivity Δρ. Young’s modulus E, the resistivity ρ, the piezoresistivity Δρ/ρε, and the nonlinearity in the stress-strain relation δ, were determined to be 264.1 ± 16.0 GPa, 1.5 ± 0.1 × 10−3 Ω cm, 1.3 ± 0.1, and −4.96 ± 0.23, respectively. The values obtained for Young’s modulus and the resistivity of the fiber are in reasonable agreement with the values reported by the manufacturer. To the best of our knowledge, this is the first report of a measurement of a third-order elastic constant of a single filament of HexTow® IM7-12K. Given the high elastic strains attainable in these fibers and the negative value of δ, the usual calculation of E from a linear fit to the stress-strain data leads to an incorrect higher value of E. According to the accepted thermodynamic definition of the elastic constants, one must use the initial slope of the stress-strain curve to evaluate E. We also observed that the glue used to secure the fiber has an influence on the apparent modulus of the fiber.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Cheng, W. Chen, and T. Weerasooriya, Mechanical Properties of kevlar® KM2 Single Fiber, J. Eng. Mater. Technol., 2005, 127, p 197–203CrossRef M. Cheng, W. Chen, and T. Weerasooriya, Mechanical Properties of kevlar® KM2 Single Fiber, J. Eng. Mater. Technol., 2005, 127, p 197–203CrossRef
2.
Zurück zum Zitat K. Brugger, Thermodynamic Definition of Higher Order Elastic Coefficients, Phys. Rev., 1964, 133, p A1611–A1612CrossRef K. Brugger, Thermodynamic Definition of Higher Order Elastic Coefficients, Phys. Rev., 1964, 133, p A1611–A1612CrossRef
3.
Zurück zum Zitat I.J. Fritz, Third-Order Elastic Constants for Materials with Transversely Isotropic Symmetry, J. Appl. Phys., 1977, 48, p 812–814CrossRef I.J. Fritz, Third-Order Elastic Constants for Materials with Transversely Isotropic Symmetry, J. Appl. Phys., 1977, 48, p 812–814CrossRef
4.
Zurück zum Zitat G.J. Curtis, J.M. Milne, and W.N. Reynolds, Non-hookean Behaviour of Strong Carbon Fibres, Nature, 1968, 220, p 1024–1025CrossRef G.J. Curtis, J.M. Milne, and W.N. Reynolds, Non-hookean Behaviour of Strong Carbon Fibres, Nature, 1968, 220, p 1024–1025CrossRef
5.
Zurück zum Zitat C.P. Beetz, Jr., Strain-Induced Stiffening of Carbon Fibres, Fibre Sci. Technol., 1982, 16, p 219–229CrossRef C.P. Beetz, Jr., Strain-Induced Stiffening of Carbon Fibres, Fibre Sci. Technol., 1982, 16, p 219–229CrossRef
6.
Zurück zum Zitat I.M. Kowalski, Characterizing the Tensile Stress-Strain Nonlinearity of Polyacrylonitrile-Based Carbon Fibers, Composite Materials: Testing and Design, American Society for Testing and Materials, Philadelphia, 1988, p 205–216 I.M. Kowalski, Characterizing the Tensile Stress-Strain Nonlinearity of Polyacrylonitrile-Based Carbon Fibers, Composite Materials: Testing and Design, American Society for Testing and Materials, Philadelphia, 1988, p 205–216
7.
Zurück zum Zitat Y. Hiki, Higher Order Elastic Constants of Solids, Ann. Rev. Mater. Sci., 1981, 11, p 51–73CrossRef Y. Hiki, Higher Order Elastic Constants of Solids, Ann. Rev. Mater. Sci., 1981, 11, p 51–73CrossRef
8.
Zurück zum Zitat F.D. Murnaghan, Finite Deformation of an Elastic Solid, Dover, New York, 1967, p 117 F.D. Murnaghan, Finite Deformation of an Elastic Solid, Dover, New York, 1967, p 117
9.
Zurück zum Zitat B.E. Powell and M.J. Skove, Combinations of Third-Order Elastic Constants of Lead, J. Appl. Phys., 1980, 51, p 3433–3434CrossRef B.E. Powell and M.J. Skove, Combinations of Third-Order Elastic Constants of Lead, J. Appl. Phys., 1980, 51, p 3433–3434CrossRef
10.
Zurück zum Zitat M.W. Riley and M.J. Skove, High-Order Elastic of Copper and Nickel Whiskers, Phys. Rev. B, 1973, 8, p 467–474CrossRef M.W. Riley and M.J. Skove, High-Order Elastic of Copper and Nickel Whiskers, Phys. Rev. B, 1973, 8, p 467–474CrossRef
11.
Zurück zum Zitat A.G. Comas, L. Manosa, A. Planes, and M. Morin, Anharmonicity of Cu-Based Shape-Memory Alloys in the Vicinity of Their Martensitic Transition, Phys. Rev. B, 1999, 59, p 246–250CrossRef A.G. Comas, L. Manosa, A. Planes, and M. Morin, Anharmonicity of Cu-Based Shape-Memory Alloys in the Vicinity of Their Martensitic Transition, Phys. Rev. B, 1999, 59, p 246–250CrossRef
12.
Zurück zum Zitat A. Gupta and I.R. Harrison, New Aspects in the Oxidative Stabilization of PAN-Based Carbon Fibers: II, Carbon, 1997, 35, p 809–818CrossRef A. Gupta and I.R. Harrison, New Aspects in the Oxidative Stabilization of PAN-Based Carbon Fibers: II, Carbon, 1997, 35, p 809–818CrossRef
13.
Zurück zum Zitat M. Guigon, A. Oberlin, and G. Desarmot, Microtexture and Structure of High Tensile Strength PAN-Based Carbon Fibers, Fibre Sci. Technol., 1984, 20, p 55–72CrossRef M. Guigon, A. Oberlin, and G. Desarmot, Microtexture and Structure of High Tensile Strength PAN-Based Carbon Fibers, Fibre Sci. Technol., 1984, 20, p 55–72CrossRef
14.
Zurück zum Zitat T.H. Ko, Influence of Continuous Stabilization on the Physical Properties and Microstructure of PAN-Based Carbon Fibers, J. Appl. Polym. Sci., 1991, 42, p 1949–1957CrossRef T.H. Ko, Influence of Continuous Stabilization on the Physical Properties and Microstructure of PAN-Based Carbon Fibers, J. Appl. Polym. Sci., 1991, 42, p 1949–1957CrossRef
15.
Zurück zum Zitat M.C. Paiva, C.A. Bernardo, and M. Nardin, Mechanical, Surface and Interfacial Characterization of Pitch and PAN-Based Carbon Fibers, Carbon, 2000, 38, p 1323–1337CrossRef M.C. Paiva, C.A. Bernardo, and M. Nardin, Mechanical, Surface and Interfacial Characterization of Pitch and PAN-Based Carbon Fibers, Carbon, 2000, 38, p 1323–1337CrossRef
16.
Zurück zum Zitat A. Voet, J.C. Morawski, and J.B. Donnet, Dynamic Mechanical Properties of Carbon Fibers, Carbon, 1975, 13, p 465–468CrossRef A. Voet, J.C. Morawski, and J.B. Donnet, Dynamic Mechanical Properties of Carbon Fibers, Carbon, 1975, 13, p 465–468CrossRef
17.
Zurück zum Zitat E.H. Bogardus, Third-Order Elastic Constants of Ge, MgO, and Fused SiO2, J. Appl. Phys., 1965, 36, p 2504–2513CrossRef E.H. Bogardus, Third-Order Elastic Constants of Ge, MgO, and Fused SiO2, J. Appl. Phys., 1965, 36, p 2504–2513CrossRef
18.
Zurück zum Zitat W.H. Prosser and R.E. Green, Jr., Characterization of the Nonlinear Elastic Properties of Graphite/Epoxy Composites Using Ultrasound, J. Reinf. Plast. Comput., 1990, 9, p 162–173CrossRef W.H. Prosser and R.E. Green, Jr., Characterization of the Nonlinear Elastic Properties of Graphite/Epoxy Composites Using Ultrasound, J. Reinf. Plast. Comput., 1990, 9, p 162–173CrossRef
19.
Zurück zum Zitat R.E. Smith, Ultrasonic Elastic Constants of Carbon Fibers and Their Composites, J. Appl. Phys., 1972, 43, p 2555–2561CrossRef R.E. Smith, Ultrasonic Elastic Constants of Carbon Fibers and Their Composites, J. Appl. Phys., 1972, 43, p 2555–2561CrossRef
20.
Zurück zum Zitat D. Segur, Y. Guillet, and B. Audoin, Picosecond Ultrasonics on a Single Micron Carbon Fiber, J. Phys., 2011, 278, p 012020-1–012020-4 D. Segur, Y. Guillet, and B. Audoin, Picosecond Ultrasonics on a Single Micron Carbon Fiber, J. Phys., 2011, 278, p 012020-1–012020-4
21.
Zurück zum Zitat B.E. Powell and M.J. Skove, A Combination of Third-Order Elastic Constants of Aluminum, J. Appl. Phys., 1982, 53, p 764–765CrossRef B.E. Powell and M.J. Skove, A Combination of Third-Order Elastic Constants of Aluminum, J. Appl. Phys., 1982, 53, p 764–765CrossRef
22.
Zurück zum Zitat B.E. Powell and M.J. Skove, Combinations of Third-Order Elastic Constants of Zinc and Cadmium, J. Appl. Phys., 1973, 44, p 666–667CrossRef B.E. Powell and M.J. Skove, Combinations of Third-Order Elastic Constants of Zinc and Cadmium, J. Appl. Phys., 1973, 44, p 666–667CrossRef
23.
Zurück zum Zitat B.E. Powell and M.J. Skove, Combinations of Fourth-Order Elastic Constants of Fused Quartz, J. Appl. Phys., 1970, 41, p 4913–4917CrossRef B.E. Powell and M.J. Skove, Combinations of Fourth-Order Elastic Constants of Fused Quartz, J. Appl. Phys., 1970, 41, p 4913–4917CrossRef
24.
Zurück zum Zitat B.E. Powell and M.J. Skove, Measurement of Higher-Order Elastic Constants Using Finite Deformations, Phys. Rev., 1968, 174, p 977–983CrossRef B.E. Powell and M.J. Skove, Measurement of Higher-Order Elastic Constants Using Finite Deformations, Phys. Rev., 1968, 174, p 977–983CrossRef
25.
Zurück zum Zitat C. Cattani, J.J. Rushchitsky, and S.V. Sinchilo, Physical Constants for One Type of Nonlinearly Elastic Fibrous Micro- and Nanocomposites with Hard and Soft Nonlinearities, Int. Appl. Mech., 2005, 41, p 1368–1377CrossRef C. Cattani, J.J. Rushchitsky, and S.V. Sinchilo, Physical Constants for One Type of Nonlinearly Elastic Fibrous Micro- and Nanocomposites with Hard and Soft Nonlinearities, Int. Appl. Mech., 2005, 41, p 1368–1377CrossRef
26.
Zurück zum Zitat N.K. Naik and V. Madhavan, Twisted Impregnated Yarns: Elastic Properties, J. Strain Anal., 2000, 35, p 83–91CrossRef N.K. Naik and V. Madhavan, Twisted Impregnated Yarns: Elastic Properties, J. Strain Anal., 2000, 35, p 83–91CrossRef
27.
Zurück zum Zitat M. Hlavacek, A Continuum Theory for Fibre Reinforced Composites, Int. J. Solid Struct., 1975, 11, p 199–211CrossRef M. Hlavacek, A Continuum Theory for Fibre Reinforced Composites, Int. J. Solid Struct., 1975, 11, p 199–211CrossRef
28.
Zurück zum Zitat C.T. Sun, J.D. Achenbach, and G. Herrmann, Continuum Theory for a Laminated Medium, J. Appl. Mech., 1968, 35, p 467–475CrossRef C.T. Sun, J.D. Achenbach, and G. Herrmann, Continuum Theory for a Laminated Medium, J. Appl. Mech., 1968, 35, p 467–475CrossRef
29.
Zurück zum Zitat S.K. Datta, H.M. Ledbetter, and R.D. Kriz, Calculated Elastic Constants of Composites Containing Anisotropic Fibers, Int. J. Solid Struct., 1984, 20, p 429–438CrossRef S.K. Datta, H.M. Ledbetter, and R.D. Kriz, Calculated Elastic Constants of Composites Containing Anisotropic Fibers, Int. J. Solid Struct., 1984, 20, p 429–438CrossRef
30.
Zurück zum Zitat W.R. Thissell, A.K. Zurek, and F. Addessio, Accurate Estimation of the Elastic Properties of Porous Fibers, Eleventh International Conference on Composite Materials, Vol 5, 1997, p 571–584 W.R. Thissell, A.K. Zurek, and F. Addessio, Accurate Estimation of the Elastic Properties of Porous Fibers, Eleventh International Conference on Composite Materials, Vol 5, 1997, p 571–584
31.
Zurück zum Zitat M.J. Skove, T.M. Tritt, A.C. Ehrlich, and H.S. Davis, Device for Simultaneously Measuring Stress, Strain and Resistance in “whiskerlike” Materials in the Temperature Range 1.5 K < T < 360 K, Rev. Sci. Instrum., 1991, 62, p 1010–1014CrossRef M.J. Skove, T.M. Tritt, A.C. Ehrlich, and H.S. Davis, Device for Simultaneously Measuring Stress, Strain and Resistance in “whiskerlike” Materials in the Temperature Range 1.5 K < T < 360 K, Rev. Sci. Instrum., 1991, 62, p 1010–1014CrossRef
32.
Zurück zum Zitat H. Qian, A. Bismarck, E.S. Greenhalgh, and M.S.P. Shaffer, Carbon Nanotube Grafted Carbon Fibres: A Study of Wetting and Fibre Fragmentation, Compos. A, 2010, 41, p 1107–1114CrossRef H. Qian, A. Bismarck, E.S. Greenhalgh, and M.S.P. Shaffer, Carbon Nanotube Grafted Carbon Fibres: A Study of Wetting and Fibre Fragmentation, Compos. A, 2010, 41, p 1107–1114CrossRef
33.
Zurück zum Zitat M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, and H.A. Goldberg: Graphite Fibers and Filaments, Vol 5 of Springer Series in Materials Science, Springer, Berlin, 1988, p 138 M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, and H.A. Goldberg: Graphite Fibers and Filaments, Vol 5 of Springer Series in Materials Science, Springer, Berlin, 1988, p 138
34.
Zurück zum Zitat P. Morgan, Carbon Fibers and Their Composites, Taylor & Francis Group, Boca Raton, FL, 2005, p 800CrossRef P. Morgan, Carbon Fibers and Their Composites, Taylor & Francis Group, Boca Raton, FL, 2005, p 800CrossRef
35.
Zurück zum Zitat Y. Wang, L. Zhang, L. Cheng, H. Mei, and J. Ma, Characterization of Tensile Behavior of a Two-Dimensional Woven Carbon/Silicon Carbide Composite Fabricated by Chemical Vapor Deposition, Mat. Sci. Eng. A, 2008, 497, p 295–300CrossRef Y. Wang, L. Zhang, L. Cheng, H. Mei, and J. Ma, Characterization of Tensile Behavior of a Two-Dimensional Woven Carbon/Silicon Carbide Composite Fabricated by Chemical Vapor Deposition, Mat. Sci. Eng. A, 2008, 497, p 295–300CrossRef
36.
Zurück zum Zitat C. Lee, X. Wei, Q. Li, R. Carpick, J.W. Kysar, and J. Hone, Elastic and Frictional Properties of Graphene, Phys. Status Solidi B, 2009, 246, p 2562–2567CrossRef C. Lee, X. Wei, Q. Li, R. Carpick, J.W. Kysar, and J. Hone, Elastic and Frictional Properties of Graphene, Phys. Status Solidi B, 2009, 246, p 2562–2567CrossRef
37.
Zurück zum Zitat B. Fultz, Vibrational Thermodynamics of Materials, Prog. Mater. Sci., 2009, 55, p 247–352CrossRef B. Fultz, Vibrational Thermodynamics of Materials, Prog. Mater. Sci., 2009, 55, p 247–352CrossRef
38.
Zurück zum Zitat S. Blazewicz, B. Patalita, and P. Touzain, Study of Piezoresistance Effect in Carbon Fibers, Carbon, 1997, 35, p 1613–1618CrossRef S. Blazewicz, B. Patalita, and P. Touzain, Study of Piezoresistance Effect in Carbon Fibers, Carbon, 1997, 35, p 1613–1618CrossRef
39.
Zurück zum Zitat C.N. Owston, Electrical Properties of Single Carbon Fibres, J. Phys. D, 1970, 3, p 1615–1626CrossRef C.N. Owston, Electrical Properties of Single Carbon Fibres, J. Phys. D, 1970, 3, p 1615–1626CrossRef
40.
Zurück zum Zitat D.W. McKee, Carbon and Graphite Science, Annu. Rev. Mater. Sci., 1973, 3, p 195–231CrossRef D.W. McKee, Carbon and Graphite Science, Annu. Rev. Mater. Sci., 1973, 3, p 195–231CrossRef
41.
Zurück zum Zitat M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M.S. Dresselhaus, Vapor-Grown Carbon Fibers (VGCFs): Basic Properties and Their Battery Applications, Carbon, 2001, 39, p 1287–1297CrossRef M. Endo, Y.A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M.S. Dresselhaus, Vapor-Grown Carbon Fibers (VGCFs): Basic Properties and Their Battery Applications, Carbon, 2001, 39, p 1287–1297CrossRef
42.
Zurück zum Zitat P.C. Conor and C.N. Owston, Electrical Resistance of Single Carbon Fibres, Nature, 1969, 223, p 1146–1147CrossRef P.C. Conor and C.N. Owston, Electrical Resistance of Single Carbon Fibres, Nature, 1969, 223, p 1146–1147CrossRef
43.
Zurück zum Zitat Y. Nishi, T. Toriyama, K. Oguri, A. Tonegawa, and K. Takayama, High Fracture Resistance of Carbon Fiber Treated by Electron Beam Irradiation, J. Mater. Res., 2001, 16, p 1632–1635CrossRef Y. Nishi, T. Toriyama, K. Oguri, A. Tonegawa, and K. Takayama, High Fracture Resistance of Carbon Fiber Treated by Electron Beam Irradiation, J. Mater. Res., 2001, 16, p 1632–1635CrossRef
44.
Zurück zum Zitat W. Ruland, The Relationship Between Preferred Orientation and Young’s Modulus of Carbon Fibers, Appl. Polym. Symp., 1969, 9, p 293–301 W. Ruland, The Relationship Between Preferred Orientation and Young’s Modulus of Carbon Fibers, Appl. Polym. Symp., 1969, 9, p 293–301
Metadaten
Titel
Second- and Third-Order Elastic Constants of Filaments of HexTow® IM7 Carbon Fiber
verfasst von
L. Oliveira
D. Hitchcock
H. Behlow
R. Podila
M. J. Skove
S. M. Serkiz
A. M. Rao
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2014
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0826-2

Weitere Artikel der Ausgabe 3/2014

Journal of Materials Engineering and Performance 3/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.