Skip to main content
Erschienen in: Photonic Network Communications 2/2021

29.06.2021 | Original Paper

Second harmonic generation in a graphene-based plasmonic waveguide

verfasst von: Vahid Khalili Sadaghiani, Mohammad Bagher Tavakoli, Ashkan Horri

Erschienen in: Photonic Network Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lithium niobate nanophotonic structures have recently become a promising candidate for efficient nonlinear frequency-conversion processes. Here, the second harmonic generation in a graphene-based LN waveguide is theoretically proposed at the telecommunication band. The structure is able to gain high conversion efficiency due to the large nonlinear coefficient of LN and tight field confinement. The subwavelength mode confinement inside the LN layer is strongly influenced by the graphene conductivity. In the presented structure, the nonlinear interaction of propagating plasmons can be widely tuned by slightly change in the surface conductivity of graphene monolayer which is a promising feature for SHG applications in comparison to the conventional structures which rely on geometry variation. According to the results, SH intensity of \(I_{{{\text{SH}}}} = 0.09\,{\text{kW}}/{\text{cm}}^{2}\) is observed at the fundamental wavelength of \(1550\,{\text{nm}}\) with a 7% of nonlinear conversion efficiency. To analyze the geometrical parameters and show the tunability of the configuration, the effect of input frequency and waveguide length on SH output power are demonstrated at \(P_{{{\text{FF}}}} = 1W\) and μc = 0.6 eV. The calculations reveal that the \(P_{{{\text{SH}}}}\) becomes lower by lengthening the waveguide where the maximum output of \(P_{{{\text{SH}}}} = 72.5\,{\text{mW}}\) is obtained at 1 μm-long waveguide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Lithium niobate.
 
Literatur
1.
Zurück zum Zitat Lin, J., et al.: Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl. 6(1), 014002 (2016)CrossRef Lin, J., et al.: Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl. 6(1), 014002 (2016)CrossRef
2.
Zurück zum Zitat Luo, R., et al.: On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25(20), 24531–24539 (2017)CrossRef Luo, R., et al.: On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25(20), 24531–24539 (2017)CrossRef
3.
Zurück zum Zitat Hao, Z., et al.: Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res. 5(6), 623–628 (2017)CrossRef Hao, Z., et al.: Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res. 5(6), 623–628 (2017)CrossRef
4.
Zurück zum Zitat Aulin, Y.V., Tuladhar, A., Borguet, E.: Ultrabroadband mid-infrared noncollinear difference frequency generation in a silver thiogallate crystal. Opt. Lett. 43(18), 4402–4405 (2018)CrossRef Aulin, Y.V., Tuladhar, A., Borguet, E.: Ultrabroadband mid-infrared noncollinear difference frequency generation in a silver thiogallate crystal. Opt. Lett. 43(18), 4402–4405 (2018)CrossRef
5.
Zurück zum Zitat Wu, R., et al.: Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43(17), 4116–4119 (2018)CrossRef Wu, R., et al.: Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43(17), 4116–4119 (2018)CrossRef
6.
Zurück zum Zitat Zhang, J., et al.: Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt. Express 21(12), 14876–14887 (2013)CrossRef Zhang, J., et al.: Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt. Express 21(12), 14876–14887 (2013)CrossRef
7.
Zurück zum Zitat Sun, Y., et al.: Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance. Opt. Express 23(5), 6370–6378 (2015)CrossRef Sun, Y., et al.: Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance. Opt. Express 23(5), 6370–6378 (2015)CrossRef
8.
Zurück zum Zitat Bin Hasan, S., et al.: Second-order nonlinear frequency conversion processes in plasmonic slot waveguides. J. Opt. Soc. Am. B Opt. Phys. 29(7), 1606–1611 (2012)CrossRef Bin Hasan, S., et al.: Second-order nonlinear frequency conversion processes in plasmonic slot waveguides. J. Opt. Soc. Am. B Opt. Phys. 29(7), 1606–1611 (2012)CrossRef
9.
Zurück zum Zitat Huang, T., Tagne, P.M., Fu, S.: Efficient second harmonic generation in internal asymmetric plasmonic slot waveguide. Opt. Express 24(9), 9706–9714 (2016)CrossRef Huang, T., Tagne, P.M., Fu, S.: Efficient second harmonic generation in internal asymmetric plasmonic slot waveguide. Opt. Express 24(9), 9706–9714 (2016)CrossRef
10.
Zurück zum Zitat Mayy, M., et al.: Toward parametric amplification in plasmonic systems: second harmonic generation enhanced by surface plasmon polaritons. Opt. Express 22(7), 7773–7782 (2014)CrossRef Mayy, M., et al.: Toward parametric amplification in plasmonic systems: second harmonic generation enhanced by surface plasmon polaritons. Opt. Express 22(7), 7773–7782 (2014)CrossRef
11.
Zurück zum Zitat Takahashi, Y., et al.: A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498(7455), 470–474 (2013)CrossRef Takahashi, Y., et al.: A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498(7455), 470–474 (2013)CrossRef
12.
Zurück zum Zitat Foster, M.A., et al.: Silicon-chip-based ultrafast optical oscilloscope. Nature 456(7218), 81–84 (2008)CrossRef Foster, M.A., et al.: Silicon-chip-based ultrafast optical oscilloscope. Nature 456(7218), 81–84 (2008)CrossRef
13.
Zurück zum Zitat Arizmendi, L.: Photonic applications of lithium niobate crystals. Phys. Status Solidi A 201(2), 253–283 (2004)CrossRef Arizmendi, L.: Photonic applications of lithium niobate crystals. Phys. Status Solidi A 201(2), 253–283 (2004)CrossRef
14.
Zurück zum Zitat Nikogosyan, D.N.: Nonlinear Optical Crystals: A Complete Survey. Springer, Berlin (2006) Nikogosyan, D.N.: Nonlinear Optical Crystals: A Complete Survey. Springer, Berlin (2006)
15.
Zurück zum Zitat Luo, R., et al.: Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett. 42(7), 1281–1284 (2017)CrossRef Luo, R., et al.: Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett. 42(7), 1281–1284 (2017)CrossRef
16.
Zurück zum Zitat Weng, W., Light, P.S., Luiten, A.N.: Ultra-sensitive lithium niobate thermometer based on a dual-resonant whispering-gallery-mode cavity. Opt. Lett. 43(7), 1415–1418 (2018)CrossRef Weng, W., Light, P.S., Luiten, A.N.: Ultra-sensitive lithium niobate thermometer based on a dual-resonant whispering-gallery-mode cavity. Opt. Lett. 43(7), 1415–1418 (2018)CrossRef
17.
Zurück zum Zitat Wang, C., et al.: Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 25(6), 6963–6973 (2017)CrossRef Wang, C., et al.: Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express 25(6), 6963–6973 (2017)CrossRef
18.
Zurück zum Zitat Wang, C., et al.: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8(1), 1–7 (2017)CrossRef Wang, C., et al.: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8(1), 1–7 (2017)CrossRef
19.
Zurück zum Zitat Ju, L., et al.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630 (2011)CrossRef Ju, L., et al.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6(10), 630 (2011)CrossRef
20.
Zurück zum Zitat Zhou, R., et al.: Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays. Opt. Express 25(25), 31478–31491 (2017)CrossRef Zhou, R., et al.: Confined surface plasmon of fundamental wave and second harmonic waves in graphene nanoribbon arrays. Opt. Express 25(25), 31478–31491 (2017)CrossRef
21.
Zurück zum Zitat Luo, R., et al.: Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5(8), 1006–1011 (2018)CrossRef Luo, R., et al.: Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5(8), 1006–1011 (2018)CrossRef
22.
Zurück zum Zitat de Oliveira, R.E., Lipson, M., de Matos, C.J.: Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation. In: Chen, S., Ji, Q.X., Gong, Q., Yi, X., Xiao, Y.F. (eds.) CLEO: Science and Innovations. Optical Society of America, Washington (2012) de Oliveira, R.E., Lipson, M., de Matos, C.J.: Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation. In: Chen, S., Ji, Q.X., Gong, Q., Yi, X., Xiao, Y.F. (eds.) CLEO: Science and Innovations. Optical Society of America, Washington (2012)
23.
Zurück zum Zitat Xiao, F., et al.: Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure. Opt. Express 23(3), 3236–3244 (2015)CrossRef Xiao, F., et al.: Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure. Opt. Express 23(3), 3236–3244 (2015)CrossRef
24.
Zurück zum Zitat Schiek, R., Pertsch, T.: Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides. Opt. Mater. Express 2(2), 126–139 (2012)CrossRef Schiek, R., Pertsch, T.: Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides. Opt. Mater. Express 2(2), 126–139 (2012)CrossRef
25.
Zurück zum Zitat Klein, R., et al.: Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions. Opt. Mater. 22(2), 171–174 (2003)CrossRef Klein, R., et al.: Absolute non-linear optical coefficients of LiNbO3 for near stoichiometric crystal compositions. Opt. Mater. 22(2), 171–174 (2003)CrossRef
26.
Zurück zum Zitat Ando, T., Zheng, Y., Suzuura, H.: Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002)CrossRef Ando, T., Zheng, Y., Suzuura, H.: Dynamical conductivity and zero-mode anomaly in honeycomb lattices. J. Phys. Soc. Jpn. 71(5), 1318–1324 (2002)CrossRef
27.
Zurück zum Zitat Sadaghiani, V.K., et al.: Design of graphene-based hybrid waveguides for nonlinear applications. Opt. Quant. Electron. 51(2), 49 (2019)CrossRef Sadaghiani, V.K., et al.: Design of graphene-based hybrid waveguides for nonlinear applications. Opt. Quant. Electron. 51(2), 49 (2019)CrossRef
Metadaten
Titel
Second harmonic generation in a graphene-based plasmonic waveguide
verfasst von
Vahid Khalili Sadaghiani
Mohammad Bagher Tavakoli
Ashkan Horri
Publikationsdatum
29.06.2021
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 2/2021
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00930-2

Weitere Artikel der Ausgabe 2/2021

Photonic Network Communications 2/2021 Zur Ausgabe

Neuer Inhalt