Skip to main content

2017 | OriginalPaper | Buchkapitel

Secondary Aluminum Alloys Processed by Semisolid Process for Automotive Application

verfasst von : F. D’Errico, D. Mattavelli

Erschienen in: Light Metals 2017

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

OEMs manufacturers of aluminum based safety components for automotive sector are used to require low percentage of Fe as contaminant, since it can be responsible of very high brittle microstructure due to formation of acicular Fe-compounds. Lowest Fe percentage is achieved by alloying primary aluminum, instead of secondary aluminum obtained on recycling marketplace. On the other hand, any aluminum alloys fabricated starting from primary aluminum achieves very high environmental impact, due to very high CO2 equivalent emitted during the early extractive stage. In order to reduce total global warming potential of finished components, recycling alloys would be preferred, but metallurgy solutions are necessary to control Fe-contaminants. According to recent advancements, Fe-compounds in recycled aluminum could be controlled throughout semisolid processes, where the stirring phase of a semisolid slurry would produce fragmentation Fe-compounds. In this work, investigation about key process parameters has been performed to correlate microstructural features to mechanical properties in presence of Fe-compound. Among various process parameters, stirring time and solid fraction are most important key parameters to control to obtain fine globular microstructure. Tensile tests have been performed showing promising results (yield strength about 300 MPa and ultimate tensile stress about 330 MPa). Stirring stage in semisolid process allows reduction of average size of Fe-compounds, thus producing an increase in percentage elongation and toughness, namely the main requirements in automotive sector for widespread use of low-cost and low-environmental impact aluminum alloys.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Das, The life-cycle impacts of aluminum body-in-white automotive material. JOM 52(8), 41–44 (2000)CrossRef S. Das, The life-cycle impacts of aluminum body-in-white automotive material. JOM 52(8), 41–44 (2000)CrossRef
2.
Zurück zum Zitat Das, S., Life cycle energy and environmental assessment of aluminum-intensive vehicle design. SAE Int. J. Mater. Manuf. 7(3) (2014) Das, S., Life cycle energy and environmental assessment of aluminum-intensive vehicle design. SAE Int. J. Mater. Manuf. 7(3) (2014)
3.
Zurück zum Zitat M. Raugei et al., A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. 108, 1168–1176 (2015) M. Raugei et al., A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. 108, 1168–1176 (2015)
4.
Zurück zum Zitat L. Bushi, T. Skszek, D. Wagner, Comparative LCA study of lightweight auto parts of MMLV MACH-I vehicle as per ISO 14040/44 LCA standards and CSA group: 2014 LCA guidance document for auto parts. Paper presented at TMS Annual Meeting 2015, 18–19 Mar 2015, pp. 193–208 L. Bushi, T. Skszek, D. Wagner, Comparative LCA study of lightweight auto parts of MMLV MACH-I vehicle as per ISO 14040/44 LCA standards and CSA group: 2014 LCA guidance document for auto parts. Paper presented at TMS Annual Meeting 2015, 18–19 Mar 2015, pp. 193–208
5.
Zurück zum Zitat R. Modaresi et all. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environ. Sci. Technol. 48(18), 10776–10784 (2014) R. Modaresi et all. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environ. Sci. Technol. 48(18), 10776–10784 (2014)
6.
Zurück zum Zitat F. Karakoyun, D. Kiritsis, K. Martinsen, Holistic life cycle approach for lightweight automotive components. Metall. Res. Technol. 111(3), 137–146 (2014) F. Karakoyun, D. Kiritsis, K. Martinsen, Holistic life cycle approach for lightweight automotive components. Metall. Res. Technol. 111(3), 137–146 (2014)
7.
Zurück zum Zitat Q.G. Wang, D. Apelian, D.A. Lados, Fatigue behavior of A356/357 aluminum cast alloys. Part II—Effect of microstructural constituents. J. Light Met. 1(1), 85–97 (2001)CrossRef Q.G. Wang, D. Apelian, D.A. Lados, Fatigue behavior of A356/357 aluminum cast alloys. Part II—Effect of microstructural constituents. J. Light Met. 1(1), 85–97 (2001)CrossRef
8.
Zurück zum Zitat A. Fabrizi et all., Evolution of Fe-rich compounds in a secondary Al–Si–Cu alloy: influence of cooling rate. Int. J. Mater. Res. 106(7), 719–724 (2015) A. Fabrizi et all., Evolution of Fe-rich compounds in a secondary Al–Si–Cu alloy: influence of cooling rate. Int. J. Mater. Res. 106(7), 719–724 (2015)
9.
Zurück zum Zitat L.A. Narayanan, F.H. Samuel, J.E. Gruzleski, Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy. Metall. Mater. Trans. A 25(8), 1761–1773 (1994)CrossRef L.A. Narayanan, F.H. Samuel, J.E. Gruzleski, Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy. Metall. Mater. Trans. A 25(8), 1761–1773 (1994)CrossRef
10.
Zurück zum Zitat G. Gustafsson, T. Thorvaldssons, G.L. Dunlop, Influence of Fe and Cr on the microstructure of cast Al–Si–Mg alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 17A(1), 45–52 (1986) G. Gustafsson, T. Thorvaldssons, G.L. Dunlop, Influence of Fe and Cr on the microstructure of cast Al–Si–Mg alloys. Metall. Trans. A Phys. Metall. Mater. Sci. 17A(1), 45–52 (1986)
11.
Zurück zum Zitat L. Sweet et al., The effect of iron content on the iron-containing intermetallic phases in a cast 6060 aluminum alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42(7), 1737–1749 (2011) L. Sweet et al., The effect of iron content on the iron-containing intermetallic phases in a cast 6060 aluminum alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42(7), 1737–1749 (2011)
12.
Zurück zum Zitat S. Kumar, N. Hari Babu, G.M. Scamans, Z. Fan, Influence of intensive melt shearing on the microstructure and mechanical properties of an Al–Mg alloy with high added impurity content. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42(10), 3141–3149 (2011) S. Kumar, N. Hari Babu, G.M. Scamans, Z. Fan, Influence of intensive melt shearing on the microstructure and mechanical properties of an Al–Mg alloy with high added impurity content. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42(10), 3141–3149 (2011)
13.
Zurück zum Zitat D.R. Gunasegaram, A. Tharumarajah, Impacts of high-pressure diecasting process parameters on greenhouse gas emissions. Metall. Mater. Trans. B 40(4), 605–614 (2009)CrossRef D.R. Gunasegaram, A. Tharumarajah, Impacts of high-pressure diecasting process parameters on greenhouse gas emissions. Metall. Mater. Trans. B 40(4), 605–614 (2009)CrossRef
14.
Zurück zum Zitat R.B.H. Tan, H.H. Khoo, An LCA study of a primary aluminum supply chain. J. Clean. Prod. 13(6), 607–618 (2005)CrossRef R.B.H. Tan, H.H. Khoo, An LCA study of a primary aluminum supply chain. J. Clean. Prod. 13(6), 607–618 (2005)CrossRef
15.
Zurück zum Zitat B.J. Welch, M.M. Hyland, B.J. James, Future materials requirements for the high-energy-intensity production of aluminum. JOM 53(2), 13–18 (2001)CrossRef B.J. Welch, M.M. Hyland, B.J. James, Future materials requirements for the high-energy-intensity production of aluminum. JOM 53(2), 13–18 (2001)CrossRef
16.
Zurück zum Zitat T.E. Norgate, W.J. Rankin, Greenhouse gas emissions from aluminium production—a life cycle approach. Paper presented at International Symposium on Greenhouse Gases in the Metallurgical Industries: Policies, Abatement and Treatment (2001), pp. 275–290 T.E. Norgate, W.J. Rankin, Greenhouse gas emissions from aluminium production—a life cycle approach. Paper presented at International Symposium on Greenhouse Gases in the Metallurgical Industries: Policies, Abatement and Treatment (2001), pp. 275–290
17.
Zurück zum Zitat J.A. Taylor, Iron-containing intermetallic phases in Al–Si based casting alloys. Mater. Sci. 1, 19–33 (2012) J.A. Taylor, Iron-containing intermetallic phases in Al–Si based casting alloys. Mater. Sci. 1, 19–33 (2012)
18.
Zurück zum Zitat A. Couture, Iron in aluminium casting alloys—a literature survey. Am. Foundryman’s Soc. Int. Cast Metals J. 6(4), 9–17 (1981) A. Couture, Iron in aluminium casting alloys—a literature survey. Am. Foundryman’s Soc. Int. Cast Metals J. 6(4), 9–17 (1981)
19.
Zurück zum Zitat P.N. Crepeau, Effect of iron in Al-Si alloys: a critical review. Trans. Am. Foundryman’s Soc. 103, 361–366 (1995) P.N. Crepeau, Effect of iron in Al-Si alloys: a critical review. Trans. Am. Foundryman’s Soc. 103, 361–366 (1995)
20.
Zurück zum Zitat G. Chen, Growth mechanisms of intermetallic phases in DC cast AA1xxx alloys. Paper presented at Light Metals 1998, San Antonio, Texas (1998), pp. 1071–1076 G. Chen, Growth mechanisms of intermetallic phases in DC cast AA1xxx alloys. Paper presented at Light Metals 1998, San Antonio, Texas (1998), pp. 1071–1076
21.
Zurück zum Zitat S. Nafisi et all., Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al–Si slurries. Acta Materialia 54(13), 3503–3511 (2006) S. Nafisi et all., Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al–Si slurries. Acta Materialia 54(13), 3503–3511 (2006)
22.
Zurück zum Zitat O. Lashkari, R. Ghomashchi, The implication of rheology in semi-solid metal processes: an overview. J. Mater. Process. Technol. 182(1–3), 229–240 (2007)CrossRef O. Lashkari, R. Ghomashchi, The implication of rheology in semi-solid metal processes: an overview. J. Mater. Process. Technol. 182(1–3), 229–240 (2007)CrossRef
23.
Zurück zum Zitat H.V. Atkinson, Modelling the semisolid processing of metallic alloys. Prog. Mater Sci. 50(3), 341–412 (2005)CrossRef H.V. Atkinson, Modelling the semisolid processing of metallic alloys. Prog. Mater Sci. 50(3), 341–412 (2005)CrossRef
24.
Zurück zum Zitat J. Koke, M. Modigell, Flow behaviour of semi-solid metal alloys. J. Nonnewton. Fluid Mech. 112(2–3), 141–160 (2003)CrossRef J. Koke, M. Modigell, Flow behaviour of semi-solid metal alloys. J. Nonnewton. Fluid Mech. 112(2–3), 141–160 (2003)CrossRef
25.
Zurück zum Zitat M. Jeyakumar, M. Hamed, S. Shankar, Rheology of liquid metals and alloys. J. Nonnewton. Fluid Mech. 166(14–15), 831–838 (2011)CrossRef M. Jeyakumar, M. Hamed, S. Shankar, Rheology of liquid metals and alloys. J. Nonnewton. Fluid Mech. 166(14–15), 831–838 (2011)CrossRef
26.
Zurück zum Zitat A. Pola, R. Roberti, M. Modigell, L. Pape, Rheological characterization of a new alloy for thixoforming. Solid State Phenom. 141–143, 301–306 (2008)CrossRef A. Pola, R. Roberti, M. Modigell, L. Pape, Rheological characterization of a new alloy for thixoforming. Solid State Phenom. 141–143, 301–306 (2008)CrossRef
27.
Zurück zum Zitat S. Tahamtan et al., Microstructure and tensile properties of thixoformed A356 alloy. Mater. Charact. 59 (2008), 223–228 S. Tahamtan et al., Microstructure and tensile properties of thixoformed A356 alloy. Mater. Charact. 59 (2008), 223–228
28.
Zurück zum Zitat S. Nafisi, R. Ghomashchi, Grain refining of conventional and semi-solid A356 Al–Si alloy. J. Mater. Process Technol. 174, 371–383 (2006)CrossRef S. Nafisi, R. Ghomashchi, Grain refining of conventional and semi-solid A356 Al–Si alloy. J. Mater. Process Technol. 174, 371–383 (2006)CrossRef
29.
Zurück zum Zitat Y. Yu, S. Kim, Y. Lee, J. Lee, Phenomenological observation on mechanical and corrosion properties of thixoformed 357 alloys: a comparison with permanent mold cast 357 alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33, 1399–1412 (2002)CrossRef Y. Yu, S. Kim, Y. Lee, J. Lee, Phenomenological observation on mechanical and corrosion properties of thixoformed 357 alloys: a comparison with permanent mold cast 357 alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33, 1399–1412 (2002)CrossRef
30.
Zurück zum Zitat S. Cecchel, G. Cornacchia, A. Panvini, Cradle-to-gate impact assessment of a high-pressure die-casting safety-relevant automotive component. JOM S. Cecchel, G. Cornacchia, A. Panvini, Cradle-to-gate impact assessment of a high-pressure die-casting safety-relevant automotive component. JOM
Metadaten
Titel
Secondary Aluminum Alloys Processed by Semisolid Process for Automotive Application
verfasst von
F. D’Errico
D. Mattavelli
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-51541-0_31

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.