Skip to main content

2017 | OriginalPaper | Buchkapitel

9. Secondary Metabolites in Cheese Fungi

verfasst von : Juan F. Martín, Paloma Liras

Erschienen in: Fungal Metabolites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Several filamentous fungi grow on the surface or inside different types of cheese, produce secondary metabolites, and contribute to the organoleptic characteristics of mature cheese. Particularly relevant is the contribution of Penicillium roqueforti to the maturation of blue-veined cheeses (Roquefort, Danablu, Cabrales, etc.). P. roqueforti is inoculated into these cheeses as a secondary starter. This fungus is closely related taxonomically to Penicillium carneum and Penicillium paneum, but these two species are not used as starters because they produce the potent toxin patulin. P. roqueforti Thom has the capability to produce about 20 secondary metabolites of at least seven different families, but it seems that only some of them are produced in microaerobic conditions and accumulate inside the cheese (e.g., andrastins). This article focuses on the biosynthetic pathways, gene clusters, and relevance of the known metabolites of P. roqueforti including roquefortines, PR-toxin and eremofortins, andrastins, mycophenolic acid, clavines (agroclavine and festuclavine), citreoisocoumarin, and orsellinic acid. In addition the biosynthesis of patulin (a P. paneum and P. carneum product) is discussed. Penicillium camemberti grows on the surface of Camembert, Brie, and related white rind cheeses, and the penetration of secondary metabolites inside the cheese is relevant. One of the P. camemberti metabolites, cyclopiazonic acid, is important because of its neurotoxicity and its biosynthesis is reviewed. The removal of toxic metabolites gene clusters by precise gene excision while preserving all other characteristics of the improved starter strains, including enzymes involved in cheese ripening and aroma formation, is now open. A possible strain improvement application to the cheese industry is of great interest.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gillot G, Jany J-L, Coton M, Le Floch G, Debaets S, Ropars J, López-Villavicencio M, Dupont J, Branca A, Giraud T, Coton E (2015) Insights into Penicillium roqueforti morphological and genetic diversity. Plos One 10(6), e0129849CrossRef Gillot G, Jany J-L, Coton M, Le Floch G, Debaets S, Ropars J, López-Villavicencio M, Dupont J, Branca A, Giraud T, Coton E (2015) Insights into Penicillium roqueforti morphological and genetic diversity. Plos One 10(6), e0129849CrossRef
2.
Zurück zum Zitat Thom C (1906) Fungi in cheese ripening: Camembert and Roquefort. USDA Bureau of Animal Industrial Bulletin 82:1–39 Thom C (1906) Fungi in cheese ripening: Camembert and Roquefort. USDA Bureau of Animal Industrial Bulletin 82:1–39
3.
Zurück zum Zitat Engel G, Teuber M (1989) Toxic metabolites from fungal cheese starter cultures (Penicillium camemberti and Penicillium roqueforti). In: van Egmond HP (ed) Mycotoxins in dairy products. Elsevier Applied Science, London Engel G, Teuber M (1989) Toxic metabolites from fungal cheese starter cultures (Penicillium camemberti and Penicillium roqueforti). In: van Egmond HP (ed) Mycotoxins in dairy products. Elsevier Applied Science, London
4.
Zurück zum Zitat Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:837–861CrossRef Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:837–861CrossRef
5.
Zurück zum Zitat Boysen M, Skouboe P, Frisvad J, Rossen L (1996) Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 142:541–549CrossRef Boysen M, Skouboe P, Frisvad J, Rossen L (1996) Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 142:541–549CrossRef
6.
Zurück zum Zitat Houbraken J, Frisvad JC, Samson RA (2010) Sex in Penicillium series Roqueforti. IMA Fungus 1:171–180CrossRef Houbraken J, Frisvad JC, Samson RA (2010) Sex in Penicillium series Roqueforti. IMA Fungus 1:171–180CrossRef
7.
Zurück zum Zitat Zeilinger S, Martín JF, García-Estrada C (2015) Fungal secondary metabolites in the OMICS era. In: Zeilinger S, Martín JF, García-Estrada C (eds) Biosynthesis and molecular, vol II. Springer, New York Zeilinger S, Martín JF, García-Estrada C (2015) Fungal secondary metabolites in the OMICS era. In: Zeilinger S, Martín JF, García-Estrada C (eds) Biosynthesis and molecular, vol II. Springer, New York
8.
Zurück zum Zitat Martín JF, García-Estrada C, Zeilinger S (eds) (2014) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York Martín JF, García-Estrada C, Zeilinger S (eds) (2014) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York
9.
Zurück zum Zitat Zeilinger S, Martín JF, García-Estrada C (eds) (2015) Biosynthesis and molecular genetics of fungal secondary metabolites, vol II. Springer, New York Zeilinger S, Martín JF, García-Estrada C (eds) (2015) Biosynthesis and molecular genetics of fungal secondary metabolites, vol II. Springer, New York
10.
Zurück zum Zitat Martín JF, Liras P (2015) Novel antimicrobial and other bioactive metabolites obtained from silent gene clusters. In: Demain AL, Sánchez S (eds) Antibiotics: current innovations and future trends. Horizon Scientific Press and Caister Academic Press, Norfolk Martín JF, Liras P (2015) Novel antimicrobial and other bioactive metabolites obtained from silent gene clusters. In: Demain AL, Sánchez S (eds) Antibiotics: current innovations and future trends. Horizon Scientific Press and Caister Academic Press, Norfolk
11.
Zurück zum Zitat Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomic-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217CrossRef Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomic-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217CrossRef
12.
Zurück zum Zitat Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metabolites from Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763CrossRef Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metabolites from Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763CrossRef
13.
Zurück zum Zitat Nielsen KF, Dalsgaard PW, Smedsgaard J, Larsen TO (2005) Andrastins A-D, Penicillium roqueforti metabolites consistently produced in blue-mold ripened cheese. J Agric Food Chem 53:2908–2913CrossRef Nielsen KF, Dalsgaard PW, Smedsgaard J, Larsen TO (2005) Andrastins A-D, Penicillium roqueforti metabolites consistently produced in blue-mold ripened cheese. J Agric Food Chem 53:2908–2913CrossRef
14.
Zurück zum Zitat Fernández-Bodega MA, Mauriz E, Gómez Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol 136:18–25CrossRef Fernández-Bodega MA, Mauriz E, Gómez Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol 136:18–25CrossRef
15.
Zurück zum Zitat García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512CrossRef García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512CrossRef
16.
Zurück zum Zitat Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg R, Vreeken RJ, Driesen AJM (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium roqueforti. PlosOne 8, e65328CrossRef Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg R, Vreeken RJ, Driesen AJM (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium roqueforti. PlosOne 8, e65328CrossRef
17.
Zurück zum Zitat Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Gen Biol 62:11–24CrossRef Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Gen Biol 62:11–24CrossRef
18.
Zurück zum Zitat Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612CrossRef Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612CrossRef
19.
Zurück zum Zitat Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y (2014) Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun 5:2876CrossRef Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y (2014) Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun 5:2876CrossRef
20.
Zurück zum Zitat Ohmomo S, Sato T, Utagawa T, Abe M (1975) Production of alkaloids and related substances by fungi. Isolation of festuclavine and three new indole alkaloids, roquefortine A, B, and C from cultures of Penicillium roqueforti. Nippon Nogei Kagaku Kaishi 49:615–623CrossRef Ohmomo S, Sato T, Utagawa T, Abe M (1975) Production of alkaloids and related substances by fungi. Isolation of festuclavine and three new indole alkaloids, roquefortine A, B, and C from cultures of Penicillium roqueforti. Nippon Nogei Kagaku Kaishi 49:615–623CrossRef
21.
Zurück zum Zitat Scott PM, Merrien MA, Polonsky J (1976) Roquefortine and isofumigaclavine A, metabolites from Penicillium roqueforti. Experientia 32:140–142CrossRef Scott PM, Merrien MA, Polonsky J (1976) Roquefortine and isofumigaclavine A, metabolites from Penicillium roqueforti. Experientia 32:140–142CrossRef
22.
Zurück zum Zitat Hymery N, Vasseur V, Coton M, Mounier J, Jany J-L, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437–456CrossRef Hymery N, Vasseur V, Coton M, Mounier J, Jany J-L, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437–456CrossRef
23.
Zurück zum Zitat Martín JF, Coton M (2016) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Elsevier, New York Martín JF, Coton M (2016) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Elsevier, New York
24.
Zurück zum Zitat Ries MI, Ali H, Lankhorst PP, Hankemeier T, Bovenberg RA, Driessen AJ, Vreeken RJ (2013) Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem 288:37289–32195CrossRef Ries MI, Ali H, Lankhorst PP, Hankemeier T, Bovenberg RA, Driessen AJ, Vreeken RJ (2013) Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem 288:37289–32195CrossRef
25.
Zurück zum Zitat Martín JF, Liras P, García-Estrada C (2014) Roquefortine and Prenylated Indole Alkaloids. In: Martín JF, Garcia-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New YorkCrossRef Martín JF, Liras P, García-Estrada C (2014) Roquefortine and Prenylated Indole Alkaloids. In: Martín JF, Garcia-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New YorkCrossRef
26.
Zurück zum Zitat Fontaine K, Passeró E, Vallones L, Hymery N, Coton M, Jany JL, Mounier J, Coton E (2015) Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control 47:634–640CrossRef Fontaine K, Passeró E, Vallones L, Hymery N, Coton M, Jany JL, Mounier J, Coton E (2015) Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control 47:634–640CrossRef
27.
Zurück zum Zitat Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241 Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241
28.
Zurück zum Zitat Martín JF, Liras P (2016) Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Appl Microbiol Biotechnol 100:1579–1587CrossRef Martín JF, Liras P (2016) Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Appl Microbiol Biotechnol 100:1579–1587CrossRef
29.
Zurück zum Zitat Li SM (2009) Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry 70:1746–1757CrossRef Li SM (2009) Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. Phytochemistry 70:1746–1757CrossRef
30.
Zurück zum Zitat Ohmomo S, Oguma K, Ohashi T, Abe M (1978) Isolation of a new indole alkaloid, roquefortine D from cultures of Penicillium roqueforti. Agric Biol Chem 42:2387–2389 Ohmomo S, Oguma K, Ohashi T, Abe M (1978) Isolation of a new indole alkaloid, roquefortine D from cultures of Penicillium roqueforti. Agric Biol Chem 42:2387–2389
31.
Zurück zum Zitat Reshetilova TA, Vinokurova NG, Khmelenina VN, Kozlovsky AG (1995) The role of roquefortine in the synthesis of alkaloids meleagrin, glandicolines A and B, and oxaline in fungi Penicillium glandicola and P. atramentosum. Microbiology 64:27–29 Reshetilova TA, Vinokurova NG, Khmelenina VN, Kozlovsky AG (1995) The role of roquefortine in the synthesis of alkaloids meleagrin, glandicolines A and B, and oxaline in fungi Penicillium glandicola and P. atramentosum. Microbiology 64:27–29
32.
Zurück zum Zitat Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293CrossRef Martín JF, Casqueiro J, Liras P (2005) Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 8:282–293CrossRef
33.
Zurück zum Zitat Moreau S, Gaudemer A, Lablache-Combier A, Biguet J (1976) Metabolites de Penicillium roqueforti: PR-toxine et metabolites associes. Tetrahedron Lett 11:833–834CrossRef Moreau S, Gaudemer A, Lablache-Combier A, Biguet J (1976) Metabolites de Penicillium roqueforti: PR-toxine et metabolites associes. Tetrahedron Lett 11:833–834CrossRef
34.
Zurück zum Zitat Chang SC, Lu KL, Yeh SF (1993) Secondary metabolites resulting from degradation of PR-toxin by Penicillium roqueforti. Appl Environ Microbiol 59:981–986 Chang SC, Lu KL, Yeh SF (1993) Secondary metabolites resulting from degradation of PR-toxin by Penicillium roqueforti. Appl Environ Microbiol 59:981–986
35.
Zurück zum Zitat Overy DP, Nielsen KF, Smedsgaard J (2005) Roquefortine/oxaline biosynthesis pathways metabolites in Penicillium ser Corymbifera: in planta production and implications for competitive fitness. J Chem Ecol 31:2373–2390CrossRef Overy DP, Nielsen KF, Smedsgaard J (2005) Roquefortine/oxaline biosynthesis pathways metabolites in Penicillium ser Corymbifera: in planta production and implications for competitive fitness. J Chem Ecol 31:2373–2390CrossRef
36.
Zurück zum Zitat Omura S, Inokoshi J, Uchida R, Shiomi K, Masuma R, Kawakubo R, Tanaka H, Iwai Y, Kosemura S, Yamamura S (1996) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. I. Producing strain, fermentation, isolation, and biological. Tetrahedron Lett 37:1265–1268CrossRef Omura S, Inokoshi J, Uchida R, Shiomi K, Masuma R, Kawakubo R, Tanaka H, Iwai Y, Kosemura S, Yamamura S (1996) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. I. Producing strain, fermentation, isolation, and biological. Tetrahedron Lett 37:1265–1268CrossRef
37.
Zurück zum Zitat Vilella D, Sánchez M, Platas G, Salazar O, Genilloud O, Royo I, Cascales C, Martín I, Díez T, Silverman KC, Lingham RB, Singh SB, Jayasuriya H, Peláez F (2000) Inhibitors of farnesylation of Ras from a microbial natural products screening program. J Ind Microbiol Biotechnol 25:315–327CrossRef Vilella D, Sánchez M, Platas G, Salazar O, Genilloud O, Royo I, Cascales C, Martín I, Díez T, Silverman KC, Lingham RB, Singh SB, Jayasuriya H, Peláez F (2000) Inhibitors of farnesylation of Ras from a microbial natural products screening program. J Ind Microbiol Biotechnol 25:315–327CrossRef
38.
Zurück zum Zitat Matsuda Y, Abe I (2014) Meroterpenoids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York Matsuda Y, Abe I (2014) Meroterpenoids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York
39.
Zurück zum Zitat Uchida R, Shiomi K, Inokoshi J, Sunazuka T, Tanaka H, Iwai Y, Takayanagi H, Omura S (1996) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. II. Structure elucidation and biosynthesis. J Antibiot (Tokyo) 49:418–424CrossRef Uchida R, Shiomi K, Inokoshi J, Sunazuka T, Tanaka H, Iwai Y, Takayanagi H, Omura S (1996) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. II. Structure elucidation and biosynthesis. J Antibiot (Tokyo) 49:418–424CrossRef
40.
Zurück zum Zitat Uchida R, Shiomi K, Inokoshi J, Tanakaf H, Iwai Y, Omura S (1996) Andrastin D, Novel protein farnesyltransferase inhibitor produced by Penicillium sp. FO-3929. J Antibiot (Tokyo) 49:1278–1280CrossRef Uchida R, Shiomi K, Inokoshi J, Tanakaf H, Iwai Y, Omura S (1996) Andrastin D, Novel protein farnesyltransferase inhibitor produced by Penicillium sp. FO-3929. J Antibiot (Tokyo) 49:1278–1280CrossRef
41.
Zurück zum Zitat Nicoletti R, Ciavatta L, Buommino E, Tufano MA (2008) Antitumor extrolites produced by Penicillium species. Int J Biomed Pharm Sci 2:1 Nicoletti R, Ciavatta L, Buommino E, Tufano MA (2008) Antitumor extrolites produced by Penicillium species. Int J Biomed Pharm Sci 2:1
42.
Zurück zum Zitat Matsuda Y, Awakawa T, Abe I (2013) Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron 69:8199e8204CrossRef Matsuda Y, Awakawa T, Abe I (2013) Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron 69:8199e8204CrossRef
43.
Zurück zum Zitat Matsuda Y, Awakawa T, Itoh T, Wakimoto T, Kushiro T, Fujii I, Ebizuka Y, Abe I (2012) Terretonin biosynthesis requires methylation as essential step for cyclization. Chembiochem 13:1738–17341CrossRef Matsuda Y, Awakawa T, Itoh T, Wakimoto T, Kushiro T, Fujii I, Ebizuka Y, Abe I (2012) Terretonin biosynthesis requires methylation as essential step for cyclization. Chembiochem 13:1738–17341CrossRef
44.
Zurück zum Zitat Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Bartman CD, Doerfler DL, Bird BA, Remaley AT, Peace JN, Campbell IM (1981) Mycophenolic acid production by Penicillium brevicompactum on solid media. Appl Environ Microbiol 41:729–736 Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Bartman CD, Doerfler DL, Bird BA, Remaley AT, Peace JN, Campbell IM (1981) Mycophenolic acid production by Penicillium brevicompactum on solid media. Appl Environ Microbiol 41:729–736
45.
Zurück zum Zitat Bentley R (2000) Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 100:3801–3826CrossRef Bentley R (2000) Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 100:3801–3826CrossRef
46.
Zurück zum Zitat Meier-Kriesche HU, Li S, Gruessner RW, Fung JJ, Bustami RT, Barr ML, Leichtman AB (2006) Immunosuppression: evolution in practice and trends, 1994–2004. Am J Transplant 6:1111–1131CrossRef Meier-Kriesche HU, Li S, Gruessner RW, Fung JJ, Bustami RT, Barr ML, Leichtman AB (2006) Immunosuppression: evolution in practice and trends, 1994–2004. Am J Transplant 6:1111–1131CrossRef
47.
Zurück zum Zitat Borroto-Esoda K, Myrick F, Feng J, Jeffrey J, Furman P (2004) In vitro combination of amdoxovir and the inosine monophosphate dehydrogenase inhibitors mycophenolic acid and ribavirin demonstrates potent activity against wild-type and drug-resistant variants of human immunodeficiency virus type 1. Antimicrob Ag Chemother 48:4387–4394CrossRef Borroto-Esoda K, Myrick F, Feng J, Jeffrey J, Furman P (2004) In vitro combination of amdoxovir and the inosine monophosphate dehydrogenase inhibitors mycophenolic acid and ribavirin demonstrates potent activity against wild-type and drug-resistant variants of human immunodeficiency virus type 1. Antimicrob Ag Chemother 48:4387–4394CrossRef
48.
Zurück zum Zitat Diamond MS, Zachariah M, Harris E (2002) Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA. Virology 304:211–221CrossRef Diamond MS, Zachariah M, Harris E (2002) Mycophenolic acid inhibits dengue virus infection by preventing replication of viral RNA. Virology 304:211–221CrossRef
49.
Zurück zum Zitat Nicoletti R, De Stefano M, De Stefano S, Trincone A, Marziano F (2004) Identification of fungitoxic metabolites produced by some Penicillium isolates antagonistic to Rhizoctonia solani. Mycopathologia 158:465–474CrossRef Nicoletti R, De Stefano M, De Stefano S, Trincone A, Marziano F (2004) Identification of fungitoxic metabolites produced by some Penicillium isolates antagonistic to Rhizoctonia solani. Mycopathologia 158:465–474CrossRef
50.
Zurück zum Zitat Tressler RJ, Garvin LJ, Slate DL (1994) Anti‐tumor activity of mycophenolate mofetil against human and mouse tumors in vivo. Int J Cancer 57:568–573CrossRef Tressler RJ, Garvin LJ, Slate DL (1994) Anti‐tumor activity of mycophenolate mofetil against human and mouse tumors in vivo. Int J Cancer 57:568–573CrossRef
51.
Zurück zum Zitat Epinette WW, Parker CM, Jones EL, Greist MC (1987) Mycophenolic acid for psoriasis. A review of pharmacology, long-term efficacy, and safety. J Am Acad Dermatol 17:962–971CrossRef Epinette WW, Parker CM, Jones EL, Greist MC (1987) Mycophenolic acid for psoriasis. A review of pharmacology, long-term efficacy, and safety. J Am Acad Dermatol 17:962–971CrossRef
52.
Zurück zum Zitat Nulton CP, Naworal JD, Campbell IM, Grotzinger EW (1976) A combined radiogas chromatograph/mass spectrometer detects intermediates in mycophenolic acid biosynthesis. Anal Biochem 75:219–233CrossRef Nulton CP, Naworal JD, Campbell IM, Grotzinger EW (1976) A combined radiogas chromatograph/mass spectrometer detects intermediates in mycophenolic acid biosynthesis. Anal Biochem 75:219–233CrossRef
53.
Zurück zum Zitat Regueira TB, Kildgaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol 77:3035–3043CrossRef Regueira TB, Kildgaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol 77:3035–3043CrossRef
54.
Zurück zum Zitat Zhang W, Cao S, Qiu L, Qi F, Li Z, Yang Y, Huang S, Bai F, Liu C, Wan X, Li S (2015) Functional characterization of MpaG′, the O-methyltransferase involved in the biosynthesis of mycophenolic acid. Chembiochem 16:565–569CrossRef Zhang W, Cao S, Qiu L, Qi F, Li Z, Yang Y, Huang S, Bai F, Liu C, Wan X, Li S (2015) Functional characterization of MpaG′, the O-methyltransferase involved in the biosynthesis of mycophenolic acid. Chembiochem 16:565–569CrossRef
55.
Zurück zum Zitat Hansen BG, Salomonsen B, Nielsen MT, Nielsen JB, Hansen NB, Nielsen K, Regueira TB, Nielsen J, Patil KR, Mortensen UH (2011) Versatile enzyme expression and characterization system for Aspergillus nidulans with the Penicillium brevicompactum polyketide synthetase gene from the mycophenolic acid gene cluster as a test case. Appl Environ Microbiol 77:3044–3051CrossRef Hansen BG, Salomonsen B, Nielsen MT, Nielsen JB, Hansen NB, Nielsen K, Regueira TB, Nielsen J, Patil KR, Mortensen UH (2011) Versatile enzyme expression and characterization system for Aspergillus nidulans with the Penicillium brevicompactum polyketide synthetase gene from the mycophenolic acid gene cluster as a test case. Appl Environ Microbiol 77:3044–3051CrossRef
56.
Zurück zum Zitat Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Regueira TB, Mortensen UH, Frisvad JC, Patil KR (2011) A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi. BMC Microbiol 11:202CrossRef Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Regueira TB, Mortensen UH, Frisvad JC, Patil KR (2011) A new class of IMP dehydrogenase with a role in self-resistance of mycophenolic acid producing fungi. BMC Microbiol 11:202CrossRef
57.
Zurück zum Zitat Rigbers O, Lin S-M (2008) Ergot alkaloid biosynthesis in Aspergillus fumigatus overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 283:26859–26868CrossRef Rigbers O, Lin S-M (2008) Ergot alkaloid biosynthesis in Aspergillus fumigatus overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 283:26859–26868CrossRef
58.
Zurück zum Zitat Tudzynski P, Neubauer L (2014) Ergot Alkaloids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York Tudzynski P, Neubauer L (2014) Ergot Alkaloids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York
59.
Zurück zum Zitat Lorenz N, Haarmann T, Paqoutová S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1832CrossRef Lorenz N, Haarmann T, Paqoutová S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1832CrossRef
60.
Zurück zum Zitat Panaccione DG (2010) Ergot alkaloids. In: Hofrichter M (ed) The mycota. Springer, Berlin Panaccione DG (2010) Ergot alkaloids. In: Hofrichter M (ed) The mycota. Springer, Berlin
61.
Zurück zum Zitat Lorenz N, Olnovská J, Kulc M, Tudzynski P (2010) Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a Xavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I. Appl Environ Microbiol 76:1822–1830CrossRef Lorenz N, Olnovská J, Kulc M, Tudzynski P (2010) Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a Xavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I. Appl Environ Microbiol 76:1822–1830CrossRef
62.
Zurück zum Zitat Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2011) Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211CrossRef Goetz KE, Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2011) Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus. Curr Genet 57:201–211CrossRef
63.
Zurück zum Zitat Wallwey C, Matuschek M, Li S (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 192:127–134CrossRef Wallwey C, Matuschek M, Li S (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 192:127–134CrossRef
64.
Zurück zum Zitat Wallwey C, Matuschek M, Xie X, Li S (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org Biomol Chem 8:3500–3508CrossRef Wallwey C, Matuschek M, Xie X, Li S (2010) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org Biomol Chem 8:3500–3508CrossRef
65.
Zurück zum Zitat Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010) Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc 132:12835–12837CrossRef Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010) Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc 132:12835–12837CrossRef
66.
Zurück zum Zitat Matuschek M, Wallwey C, Xie X, Li SM (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328–4335CrossRef Matuschek M, Wallwey C, Xie X, Li SM (2011) New insights into ergot alkaloid biosynthesis in Claviceps purpurea: an agroclavine synthase EasG catalyses, via a non-enzymatic adduct with reduced glutathione, the conversion of chanoclavine-I aldehyde to agroclavine. Org Biomol Chem 9:4328–4335CrossRef
67.
Zurück zum Zitat Sorensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618CrossRef Sorensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618CrossRef
68.
Zurück zum Zitat Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins 2:613–631CrossRef Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins 2:613–631CrossRef
69.
Zurück zum Zitat Houbraken J, Samson RA, Frisvad JC (2006) Byssochlamys: significance of heat resistance and mycotoxin production. Adv Exp Med Biol 571:211–224CrossRef Houbraken J, Samson RA, Frisvad JC (2006) Byssochlamys: significance of heat resistance and mycotoxin production. Adv Exp Med Biol 571:211–224CrossRef
70.
Zurück zum Zitat Varga J, Due M, Frisvad J, Samson RA (2007) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106CrossRef Varga J, Due M, Frisvad J, Samson RA (2007) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106CrossRef
71.
Zurück zum Zitat McKinley ER, Carlton WW (1991) Patulin. In: Salunkhe DK, Sharma RP (eds) Mycotoxins and phytoalexins. CRC Press, Boca Raton McKinley ER, Carlton WW (1991) Patulin. In: Salunkhe DK, Sharma RP (eds) Mycotoxins and phytoalexins. CRC Press, Boca Raton
72.
Zurück zum Zitat Beck J, Ripka S, Siegner A, Schiltz E, Schweizer E (1990) The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem 192:487–498CrossRef Beck J, Ripka S, Siegner A, Schiltz E, Schweizer E (1990) The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur J Biochem 192:487–498CrossRef
73.
Zurück zum Zitat Wang IK, Reeves C, Gaucher GM (1991) Isolation and sequencing of a genomic DNA clone containing the 3′terminus of the 6-methylsalicylic acid polyketide synthetase gene of Penicillium urticae. Can J Microbiol 37:86–95CrossRef Wang IK, Reeves C, Gaucher GM (1991) Isolation and sequencing of a genomic DNA clone containing the 3′terminus of the 6-methylsalicylic acid polyketide synthetase gene of Penicillium urticae. Can J Microbiol 37:86–95CrossRef
74.
Zurück zum Zitat Dombrink-Kurtzman MA (2007) The sequence of the isoepoxydon dehydrogenase gene of the patulin biosynthetic pathway in Penicillium species. Antonie Van Leeuwenhoek 91:179–189CrossRef Dombrink-Kurtzman MA (2007) The sequence of the isoepoxydon dehydrogenase gene of the patulin biosynthetic pathway in Penicillium species. Antonie Van Leeuwenhoek 91:179–189CrossRef
75.
Zurück zum Zitat Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, Puel O (2009) Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology 155:1738–1747CrossRef Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, Puel O (2009) Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology 155:1738–1747CrossRef
76.
Zurück zum Zitat Abbas A, Dobson ADW (2011) Yeasts and molds: Penicillium camemberti. In: Funquay JW (ed) Encyclopedia of dairy sciences. Academic, San Diego Abbas A, Dobson ADW (2011) Yeasts and molds: Penicillium camemberti. In: Funquay JW (ed) Encyclopedia of dairy sciences. Academic, San Diego
77.
Zurück zum Zitat Chang PK, Horn BW, Dorner JW (2009) Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet Biol 46:176–182CrossRef Chang PK, Horn BW, Dorner JW (2009) Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet Biol 46:176–182CrossRef
78.
Zurück zum Zitat Liu X, Walsh CT (2009) Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry 48:8746–8757CrossRef Liu X, Walsh CT (2009) Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry 48:8746–8757CrossRef
79.
Zurück zum Zitat Liu X, Walsh CT (2009) Characterization of cyclo-acetoacetyl-L-tryptophan dimethylallyltransferase in cyclopiazonic acid biosynthesis: substrate promiscuity and site directed mutagenesis studies. Biochemistry 48:11032–11044CrossRef Liu X, Walsh CT (2009) Characterization of cyclo-acetoacetyl-L-tryptophan dimethylallyltransferase in cyclopiazonic acid biosynthesis: substrate promiscuity and site directed mutagenesis studies. Biochemistry 48:11032–11044CrossRef
80.
Zurück zum Zitat Tokuoka M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Koyama Y (2008) Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet Biol 45:1608–1615CrossRef Tokuoka M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Koyama Y (2008) Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet Biol 45:1608–1615CrossRef
81.
Zurück zum Zitat Holzapfel CW, Wilkins DC (1971) On the biosynthesis of cyclopiazonic acid. Phitochem 10:351–358CrossRef Holzapfel CW, Wilkins DC (1971) On the biosynthesis of cyclopiazonic acid. Phitochem 10:351–358CrossRef
82.
Zurück zum Zitat Shinohara Y, Tokuoka M, Koyama Y (2011) Functional analysis of the cyclopiazonic acid biosynthesis gene cluster in Aspergillus oryzae RIB 40. Biosci Biotechnol Biochem 75:2249–2252CrossRef Shinohara Y, Tokuoka M, Koyama Y (2011) Functional analysis of the cyclopiazonic acid biosynthesis gene cluster in Aspergillus oryzae RIB 40. Biosci Biotechnol Biochem 75:2249–2252CrossRef
83.
Zurück zum Zitat Kato N, Tokuoka M, Shinohara Y, Kawatani M, Uramoto M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Takahashi S, Koyama Y, Osada H (2011) Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus oryzae. Chembiochem 12:1376–1382CrossRef Kato N, Tokuoka M, Shinohara Y, Kawatani M, Uramoto M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Takahashi S, Koyama Y, Osada H (2011) Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus oryzae. Chembiochem 12:1376–1382CrossRef
Metadaten
Titel
Secondary Metabolites in Cheese Fungi
verfasst von
Juan F. Martín
Paloma Liras
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-25001-4_37