Skip to main content
Erschienen in: Mobile Networks and Applications 1/2020

05.02.2019

Secrecy Performance in the Internet of Things: Optimal Energy Harvesting Time Under Constraints of Sensors and Eavesdroppers

verfasst von: Van Nhan Vo, Tri Gia Nguyen, Chakchai So-In, Hung Tran, Surasak Sanguanpong

Erschienen in: Mobile Networks and Applications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the physical layer security (PLS) performance for the Internet of Things (IoT), which is modeled as an IoT sensor network (ISN). The considered system consists of multiple power transfer stations (PTSs), multiple IoT sensor nodes (SNs), one legitimate fusion center (LFC) and multiple eavesdropping fusion centers (EFCs), which attempt to extract the transmitted information at SNs without an active attack. The SNs and the EFCs are equipped with a single antenna, while the LFC is equipped with multiple antennas. Specifically, the SNs harvest energy from the PTSs and then use the harvested energy to transmit the information to the LFC. In this research, the energy harvesting (EH) process is considered in the following two strategies: 1) the SN harvests energy from all PTSs, and 2) the SN harvests energy from the best PTS. To guarantee security for the considered system before the SN sends the packet, the SN’s power is controlled by a suitable power policy that is based on the channel state information (CSI), harvested energy, and security constraints. An algorithm for the nearly optimal EH time is implemented. Accordingly, the analytical expressions for the existence probability of secrecy capacity and secrecy outage probability (SOP) are derived by using the statistical characteristics of the signal-to-noise ratio (SNR). In addition, we analyze the secrecy performance for various system parameters, such as the location of system elements, the number of PTSs, and the number of EFCs. Finally, the results of Monte Carlo simulations are provided to confirm the correctness of our analysis and derivation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wan J, Tang S, Shu Z, Li D, Wang S, Imran M, Vasilakos AV (2016) Software-defined industrial internet of things in the context of industry 4.0. IEEE Sens J 16(20):7373–7380 Wan J, Tang S, Shu Z, Li D, Wang S, Imran M, Vasilakos AV (2016) Software-defined industrial internet of things in the context of industry 4.0. IEEE Sens J 16(20):7373–7380
2.
Zurück zum Zitat Zhang J, Duong TQ, Woods R, Marshall A (2017) Securing wireless communications of the internet of things from the physical layer, an overview. Entropy 19(8):1–16CrossRef Zhang J, Duong TQ, Woods R, Marshall A (2017) Securing wireless communications of the internet of things from the physical layer, an overview. Entropy 19(8):1–16CrossRef
3.
Zurück zum Zitat Heng S, So-In C, Nguyen TG (2017) Distributed image compression architecture over wireless multimedia sensor networks. Wirel Commun Mob Comput 2017:1–21CrossRef Heng S, So-In C, Nguyen TG (2017) Distributed image compression architecture over wireless multimedia sensor networks. Wirel Commun Mob Comput 2017:1–21CrossRef
4.
Zurück zum Zitat Nguyen TG, So-In C, Nguyen NG, Phoemphon S (2017) A novel energy-efficient clustering protocol with area coverage awareness for wireless sensor networks. Peer to Peer Netw Appl 10(3):519–536CrossRef Nguyen TG, So-In C, Nguyen NG, Phoemphon S (2017) A novel energy-efficient clustering protocol with area coverage awareness for wireless sensor networks. Peer to Peer Netw Appl 10(3):519–536CrossRef
5.
Zurück zum Zitat Mukherjee A (2015) Physical-layer security in the internet of things: Sensing and communication confidentiality under resource constraints. Proc IEEE 103(10):1747–1761CrossRef Mukherjee A (2015) Physical-layer security in the internet of things: Sensing and communication confidentiality under resource constraints. Proc IEEE 103(10):1747–1761CrossRef
6.
Zurück zum Zitat Naira AK, Asmib S, Gopakumar A (2016) Analysis of physical layer security via co-operative communication in internet of things. Procedia Technol 24:896–903CrossRef Naira AK, Asmib S, Gopakumar A (2016) Analysis of physical layer security via co-operative communication in internet of things. Procedia Technol 24:896–903CrossRef
7.
Zurück zum Zitat Abomhara M, Koien GM (2014) Security and privacy in the internet of things: Current status and open issues. In: Proc. IEEE int. conf. privacy security mobile syst., pp 1–8 Abomhara M, Koien GM (2014) Security and privacy in the internet of things: Current status and open issues. In: Proc. IEEE int. conf. privacy security mobile syst., pp 1–8
8.
Zurück zum Zitat Granjal J, Monteiro E, Silva JS (2015) Security for the internet of things: A survey of existing protocols and open research issues. IEEE Commun Survey Tuts 17(3):1294–1312CrossRef Granjal J, Monteiro E, Silva JS (2015) Security for the internet of things: A survey of existing protocols and open research issues. IEEE Commun Survey Tuts 17(3):1294–1312CrossRef
9.
Zurück zum Zitat Zhou L, Chao H (2011) Multimedia traffic security architecture for the internet of things. IEEE Netw 25(3):35–40CrossRef Zhou L, Chao H (2011) Multimedia traffic security architecture for the internet of things. IEEE Netw 25(3):35–40CrossRef
10.
Zurück zum Zitat Jing Q, Vasilakos A, Wan J, Lu J, Qiu D (2014) Security of the internet of things: perspectives and challenges. Wirel Netw 20(8):2481–2501CrossRef Jing Q, Vasilakos A, Wan J, Lu J, Qiu D (2014) Security of the internet of things: perspectives and challenges. Wirel Netw 20(8):2481–2501CrossRef
11.
Zurück zum Zitat Zhang K, Liang X, Lu R, Shen X (2014) Sybil attacks and their defenses in the internet of things. IEEE Internet Things J 1(5):372–383CrossRef Zhang K, Liang X, Lu R, Shen X (2014) Sybil attacks and their defenses in the internet of things. IEEE Internet Things J 1(5):372–383CrossRef
12.
Zurück zum Zitat Abomhara M, Koien GM (2014) Security and privacy in the internet of things: Current status and open issues. In: Proc. IEEE int. conf. privacy security mobile syst., pp 1–8 Abomhara M, Koien GM (2014) Security and privacy in the internet of things: Current status and open issues. In: Proc. IEEE int. conf. privacy security mobile syst., pp 1–8
13.
Zurück zum Zitat Skarmeta AF, Ramos JLH, Moreno MV (2014) A decentralized approach for security and privacy challenges in the internet of things. In: Proc IEEE world forum internet thing, pp 67–72 Skarmeta AF, Ramos JLH, Moreno MV (2014) A decentralized approach for security and privacy challenges in the internet of things. In: Proc IEEE world forum internet thing, pp 67–72
14.
Zurück zum Zitat Roman R, Najera P, Lopez J (2011) Securing the internet of things. Computer 44(9):51–58CrossRef Roman R, Najera P, Lopez J (2011) Securing the internet of things. Computer 44(9):51–58CrossRef
15.
Zurück zum Zitat Suo H, Wan J, Zou C, Liu J (2012) Security in the tnternet of things: A review. Proc IEEE Int Conf Comput Sci Electron Eng 3:648–651 Suo H, Wan J, Zou C, Liu J (2012) Security in the tnternet of things: A review. Proc IEEE Int Conf Comput Sci Electron Eng 3:648–651
16.
Zurück zum Zitat Skarmeta AF, Hernandez-Ramos JL, Moreno MV (2014) A decentralized approach for security and privacy challenges in the internet of things. In: Proc IEEE World Forum Internet Things, no 67–72 Skarmeta AF, Hernandez-Ramos JL, Moreno MV (2014) A decentralized approach for security and privacy challenges in the internet of things. In: Proc IEEE World Forum Internet Things, no 67–72
17.
Zurück zum Zitat Soni A, Upadhyay R, Jain A (2017) Internet of things and wireless physical layer security: A survey. Comput Commun Netw Internet Secur 5:115–123 Soni A, Upadhyay R, Jain A (2017) Internet of things and wireless physical layer security: A survey. Comput Commun Netw Internet Secur 5:115–123
18.
Zurück zum Zitat Wang N, Jiang T, Li W, Lv S (2017) Physical-layer security in internet of things based on compressed sensing and frequency selection. IET Commun 11(9):1431–1437 Wang N, Jiang T, Li W, Lv S (2017) Physical-layer security in internet of things based on compressed sensing and frequency selection. IET Commun 11(9):1431–1437
19.
Zurück zum Zitat Xu Q, Ren P, Song H, Du Q (2016) Security enhancement for IoT communications exposed to eavesdroppers with uncertain locations. IEEE Access 4:2840–2853CrossRef Xu Q, Ren P, Song H, Du Q (2016) Security enhancement for IoT communications exposed to eavesdroppers with uncertain locations. IEEE Access 4:2840–2853CrossRef
20.
Zurück zum Zitat Pecorella T, Brilli L, Mucchi L (2016) The role of physical layer security in IoT: A novel perspective. Information 7(3):1–17CrossRef Pecorella T, Brilli L, Mucchi L (2016) The role of physical layer security in IoT: A novel perspective. Information 7(3):1–17CrossRef
21.
Zurück zum Zitat Zhong Z, Peng J, Huang K, Zhong Z (2017) Analysis on physical-layer security for internet of things in ultra dense heterogeneous networks. In: Proc. int. conf. on internet of things (iThings) and IEEE green computing and commun. (greencom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData), pp 39–43 Zhong Z, Peng J, Huang K, Zhong Z (2017) Analysis on physical-layer security for internet of things in ultra dense heterogeneous networks. In: Proc. int. conf. on internet of things (iThings) and IEEE green computing and commun. (greencom) and IEEE cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData), pp 39–43
22.
Zurück zum Zitat Van NT, Do TN, Bao VNQ, An B (2017) Performance analysis of wireless energy harvesting multihop cluster-based networks over Nakagami-m fading channels. IEEE Access 6:3068–3084CrossRef Van NT, Do TN, Bao VNQ, An B (2017) Performance analysis of wireless energy harvesting multihop cluster-based networks over Nakagami-m fading channels. IEEE Access 6:3068–3084CrossRef
23.
Zurück zum Zitat Vo VN, Nguyen TG, So-In C, Baig ZA, Sanguanpong S (2018) Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy, IEEE Access Vo VN, Nguyen TG, So-In C, Baig ZA, Sanguanpong S (2018) Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy, IEEE Access
24.
Zurück zum Zitat Kamalinejad P, Mahapatra C, Sheng Z, Mirabbasi S, Leung VCM, Guan YL (2015) Wireless energy harvesting for the internet of things. IEEE Commun Mag 53(6):102–108CrossRef Kamalinejad P, Mahapatra C, Sheng Z, Mirabbasi S, Leung VCM, Guan YL (2015) Wireless energy harvesting for the internet of things. IEEE Commun Mag 53(6):102–108CrossRef
25.
Zurück zum Zitat Hu H, Gao Z, Liao X, Leung VCM (2017) Secure communications in ciot networks with a wireless energy harvesting untrusted relay. Sensors 17(9):1–21CrossRef Hu H, Gao Z, Liao X, Leung VCM (2017) Secure communications in ciot networks with a wireless energy harvesting untrusted relay. Sensors 17(9):1–21CrossRef
26.
Zurück zum Zitat Habibu H, Zungeru AM, Susan AA, Gerald I (2014) Energy harvesting wireless sensor networks: Design and modeling. Int J Wireless Mobile Netw 6(5):17–31CrossRef Habibu H, Zungeru AM, Susan AA, Gerald I (2014) Energy harvesting wireless sensor networks: Design and modeling. Int J Wireless Mobile Netw 6(5):17–31CrossRef
27.
Zurück zum Zitat Shaikh FK, Zeadally S (2016) Energy harvesting in wireless sensor networks: A comprehensive review, Renew. Sustain Energy Rev 55:1041–1054CrossRef Shaikh FK, Zeadally S (2016) Energy harvesting in wireless sensor networks: A comprehensive review, Renew. Sustain Energy Rev 55:1041–1054CrossRef
28.
Zurück zum Zitat Li T, Dong Y, Fan P, Letaief KB (2017) Wireless communications with RF-based energy harvesting: From information theory to green systems. IEEE Access 5:27538–27550CrossRef Li T, Dong Y, Fan P, Letaief KB (2017) Wireless communications with RF-based energy harvesting: From information theory to green systems. IEEE Access 5:27538–27550CrossRef
29.
Zurück zum Zitat Smart G, Atkinson J, Mitchell J, Rodrigues M, Andreopoulos Y (2016) Energy harvesting for the internet-of-things: Measurements and probability models. In: Proc int. conf. on telecommun., pp 1–6 Smart G, Atkinson J, Mitchell J, Rodrigues M, Andreopoulos Y (2016) Energy harvesting for the internet-of-things: Measurements and probability models. In: Proc int. conf. on telecommun., pp 1–6
30.
Zurück zum Zitat Mallick S, Habib A-Z, Ahmed AS, Alam SS (2017) Performance appraisal of wireless energy harvesting in IoT. In: Proc int. conf. on elect. inform. and commun. technology, pp 1–6 Mallick S, Habib A-Z, Ahmed AS, Alam SS (2017) Performance appraisal of wireless energy harvesting in IoT. In: Proc int. conf. on elect. inform. and commun. technology, pp 1–6
31.
Zurück zum Zitat Yang G, Ho CK, Guan YL (2014) Dynamic resource allocation for multiple-antenna wireless power transfer. IEEE Trans Signal Process 62(14):3565–3577MathSciNetCrossRef Yang G, Ho CK, Guan YL (2014) Dynamic resource allocation for multiple-antenna wireless power transfer. IEEE Trans Signal Process 62(14):3565–3577MathSciNetCrossRef
32.
Zurück zum Zitat Xiao L, Wang P, Niyato D, Kim DI, Han Z (2014) Wireless networks with RF energy har-vesting: A contemporary survey. IEEE Commun Surveys Tutorials 17(2):757–789 Xiao L, Wang P, Niyato D, Kim DI, Han Z (2014) Wireless networks with RF energy har-vesting: A contemporary survey. IEEE Commun Surveys Tutorials 17(2):757–789
33.
Zurück zum Zitat Chen Z, Ding Z, Dai X, Zhang R (2016) A mathematical proof of the superiority of NOMA compared to conventional OMA. IEEE Trans. Signal Process., pp 1–28. arXiv:1612.01069 Chen Z, Ding Z, Dai X, Zhang R (2016) A mathematical proof of the superiority of NOMA compared to conventional OMA. IEEE Trans. Signal Process., pp 1–28. arXiv:1612.​01069
34.
Zurück zum Zitat Vo VN, Nguyen TG, So-In C, Ha D-B (2017) Secrecy performance analysis of energy harvesting wireless sensor networks with a friendly jammer. IEEE Access 5:25196–25206CrossRef Vo VN, Nguyen TG, So-In C, Ha D-B (2017) Secrecy performance analysis of energy harvesting wireless sensor networks with a friendly jammer. IEEE Access 5:25196–25206CrossRef
35.
Zurück zum Zitat Wang N, Song X, Cheng J, Leung VCM (2014) Enhancing the security of free-space optical communications with secret sharing and key agreement. J Opt Commun Netw 6(12):1072– 1081CrossRef Wang N, Song X, Cheng J, Leung VCM (2014) Enhancing the security of free-space optical communications with secret sharing and key agreement. J Opt Commun Netw 6(12):1072– 1081CrossRef
37.
Zurück zum Zitat Ha D-B, Tran D-D, Truong T-V, Vo N-V (2016) Physical layer secrecy performance of energy harvesting networks with power transfer station selection. In: Proc IEEE Int. Conf. Commun. Electron., pp 451–456 Ha D-B, Tran D-D, Truong T-V, Vo N-V (2016) Physical layer secrecy performance of energy harvesting networks with power transfer station selection. In: Proc IEEE Int. Conf. Commun. Electron., pp 451–456
38.
Zurück zum Zitat Naderi MY, Chowdhury KR, Basagni S (2015) Wireless sensor networks with RF energy harvesting: Energy models and analysis. In: Proc IEEE Wireless Commun. and Networking Conf., pp 1494–1499 Naderi MY, Chowdhury KR, Basagni S (2015) Wireless sensor networks with RF energy harvesting: Energy models and analysis. In: Proc IEEE Wireless Commun. and Networking Conf., pp 1494–1499
39.
Zurück zum Zitat Oliveira D, Oliveira R (2016) Modeling energy availability in RF energy harvesting networks. In: Proc Int. Symp. on Wireless Commun. Syst., pp 383–387 Oliveira D, Oliveira R (2016) Modeling energy availability in RF energy harvesting networks. In: Proc Int. Symp. on Wireless Commun. Syst., pp 383–387
40.
Zurück zum Zitat Hoang TM, Duong TQ, Vo NS, Kundu C (2017) Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Commun Lett 6(2):174– 177CrossRef Hoang TM, Duong TQ, Vo NS, Kundu C (2017) Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Commun Lett 6(2):174– 177CrossRef
41.
Zurück zum Zitat Tran H, Quach TX, Tran H, Uhlemann E (2017) Optimal energy harvesting time and transmit power in cognitive radio network under joint constraints of primary users and eavesdroppers. In: Proc. Int. Symp. on Personal, Indoor and Mobile Radio Commun., pp 1–8 Tran H, Quach TX, Tran H, Uhlemann E (2017) Optimal energy harvesting time and transmit power in cognitive radio network under joint constraints of primary users and eavesdroppers. In: Proc. Int. Symp. on Personal, Indoor and Mobile Radio Commun., pp 1–8
42.
Zurück zum Zitat Yang N, Yeoh PL, Elkashlan M, Schober R, Collings IB (2013) Transmit antenna selection for security enhancement in mimo wiretap channels. IEEE Trans Commun 61(1):144–154CrossRef Yang N, Yeoh PL, Elkashlan M, Schober R, Collings IB (2013) Transmit antenna selection for security enhancement in mimo wiretap channels. IEEE Trans Commun 61(1):144–154CrossRef
43.
Zurück zum Zitat Deng Y, Elkashlan M, Yeoh PL, Yang N, Mallik RK (2014) Cognitive mimo relay networks with generalized selection combining. IEEE Trans Wireless Commun 13(9):4911–4922CrossRef Deng Y, Elkashlan M, Yeoh PL, Yang N, Mallik RK (2014) Cognitive mimo relay networks with generalized selection combining. IEEE Trans Wireless Commun 13(9):4911–4922CrossRef
44.
Zurück zum Zitat Gradshteyn I, Ryzhik I, Zwillinger D (2007) Table of integrals, series, and products. In: Jeffrey A (ed). Academic Press, USA Gradshteyn I, Ryzhik I, Zwillinger D (2007) Table of integrals, series, and products. In: Jeffrey A (ed). Academic Press, USA
45.
Zurück zum Zitat Tran H, Akerberg J, Bjorkman M, Tran H-V (2017) RF energy harvesting: an analysis of wireless sensor networks for reliable communication, Wirel. Netw, pp 1–15 Tran H, Akerberg J, Bjorkman M, Tran H-V (2017) RF energy harvesting: an analysis of wireless sensor networks for reliable communication, Wirel. Netw, pp 1–15
46.
Zurück zum Zitat Zou Y, Wang G (2016) Intercept behavior analysis of industrial wireless sensor networks in the presence of eavesdropping attack. IEEE Trans Ind Informat 12(2):780–787CrossRef Zou Y, Wang G (2016) Intercept behavior analysis of industrial wireless sensor networks in the presence of eavesdropping attack. IEEE Trans Ind Informat 12(2):780–787CrossRef
47.
Zurück zum Zitat Barros J, Rodrigues MRD (2006) Secrecy capacity of wireless channels, Proc. IEEE Int. Symp. Inf. Theory, pp 356–360. Barros J, Rodrigues MRD (2006) Secrecy capacity of wireless channels, Proc. IEEE Int. Symp. Inf. Theory, pp 356–360.
48.
Zurück zum Zitat Bhargav N, Cotton SL, Simmons DE (2016) Secrecy capacity analysis over κ-μ fading channels: Theory and applications. IEEE Trans Commun 64(7):1–26CrossRef Bhargav N, Cotton SL, Simmons DE (2016) Secrecy capacity analysis over κ-μ fading channels: Theory and applications. IEEE Trans Commun 64(7):1–26CrossRef
49.
Zurück zum Zitat Toan HV, Bao VNQ, Le HN (2017) Cognitive two-way relay systems with multiple primary receivers: exact and asymptotic outage formulation. IET Commun 11(16):2490–2497CrossRef Toan HV, Bao VNQ, Le HN (2017) Cognitive two-way relay systems with multiple primary receivers: exact and asymptotic outage formulation. IET Commun 11(16):2490–2497CrossRef
50.
Zurück zum Zitat Hine G (2017) Proof by mathematical induction: professional practice for secondary teachers. In: Australian Assoc. of Math. Teachers Biennial Conf., pp 1–8 Hine G (2017) Proof by mathematical induction: professional practice for secondary teachers. In: Australian Assoc. of Math. Teachers Biennial Conf., pp 1–8
Metadaten
Titel
Secrecy Performance in the Internet of Things: Optimal Energy Harvesting Time Under Constraints of Sensors and Eavesdroppers
verfasst von
Van Nhan Vo
Tri Gia Nguyen
Chakchai So-In
Hung Tran
Surasak Sanguanpong
Publikationsdatum
05.02.2019
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 1/2020
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-019-01217-7

Weitere Artikel der Ausgabe 1/2020

Mobile Networks and Applications 1/2020 Zur Ausgabe

Neuer Inhalt