Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

25.01.2020

Secrecy Performance of Amplify-and-Forward Relay Networks with Relay Selection under Nakagami-m Fading

verfasst von: Rashmi Datta, Devendra S. Gurjar, T. K. Manohar Reddy, Sonu K. Chaupal, Manish Mandloi, Ashraf Hossain

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we examine the secrecy outage performance of a dual-hop relay network under Nakagami-m fading. Here, we consider a three-terminal wireless communication system, where one node (source) communicates to the other node (destination) via a group of relay nodes. Due to severe fading and heavy shadowing, the direct link between two communicating nodes is not suitable to achieve the desired performance. Therefore, one relay is opportunistically selected amongst K relay nodes to establish their communications. For providing relay cooperation, the best relay is selected based on criteria that maximize the secrecy outage performance. Selected relay applies amplify-and-forward operation to facilitate relay assistance by broadcasting the received signal. Along with the destination node, an eavesdropper also receives the broadcasted signals. For this setup, we derive the closed-form expressions of secrecy outage probability with the assumption that wireless channels experience Nakagami-m fading. Various numerical results are illustrated to highlight the key performance impact of different system and channel parameters. We also verify the accuracy of our derived expressions by comparing the results with similar work done in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang, H.-M., & Xia, X.-G. (2015). Enhancing wireless secrecy via cooperation: Signal design and optimization. IEEE Communications Magazine, 53(12), 47–53.CrossRef Wang, H.-M., & Xia, X.-G. (2015). Enhancing wireless secrecy via cooperation: Signal design and optimization. IEEE Communications Magazine, 53(12), 47–53.CrossRef
3.
Zurück zum Zitat Zhang, Y., Sun, A., Liang, T., & Qiao, X. (2015). Max-ratio relay selection for secure communication in amplify-and-forward buffer-aided cooperative networks. In IEEE international conference on signal processing, communications and computing (ICSPCC) (pp. 1–4). Ningbo. Zhang, Y., Sun, A., Liang, T., & Qiao, X. (2015). Max-ratio relay selection for secure communication in amplify-and-forward buffer-aided cooperative networks. In IEEE international conference on signal processing, communications and computing (ICSPCC) (pp. 1–4). Ningbo.
4.
Zurück zum Zitat Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRef Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRef
5.
Zurück zum Zitat Gurjar, D. S., & Upadhyay, P. K. (2018). Overlay device-to-device communications in asymmetric two-way cellular systems with hybrid relaying. IEEE Systems Journal, 12(4), 3713–3724.CrossRef Gurjar, D. S., & Upadhyay, P. K. (2018). Overlay device-to-device communications in asymmetric two-way cellular systems with hybrid relaying. IEEE Systems Journal, 12(4), 3713–3724.CrossRef
6.
Zurück zum Zitat Li, J., Petropulu, A. P., & Weber, S. (2011). On cooperative relaying schemes for wireless physical layer security. IEEE Transactions on Signal Processing, 59(10), 4985–4996.MathSciNetCrossRef Li, J., Petropulu, A. P., & Weber, S. (2011). On cooperative relaying schemes for wireless physical layer security. IEEE Transactions on Signal Processing, 59(10), 4985–4996.MathSciNetCrossRef
7.
Zurück zum Zitat Gurjar, D. S., Upadhyay, P. K., da Costa, D. B., & de Sousa, R. T. (2017). Beamforming in traffic-aware two-way relay systems with channel estimation error and feedback delay. IEEE Transactions on Vehicular Technology, 66(10), 8807–8820.CrossRef Gurjar, D. S., Upadhyay, P. K., da Costa, D. B., & de Sousa, R. T. (2017). Beamforming in traffic-aware two-way relay systems with channel estimation error and feedback delay. IEEE Transactions on Vehicular Technology, 66(10), 8807–8820.CrossRef
8.
Zurück zum Zitat Wu, N. E., & Li, H. J. (2013). Effect of feedback delay on secure cooperative networks with joint relay and jammer selection. IEEE Wireless Communications Letters, 2(4), 415–418.CrossRef Wu, N. E., & Li, H. J. (2013). Effect of feedback delay on secure cooperative networks with joint relay and jammer selection. IEEE Wireless Communications Letters, 2(4), 415–418.CrossRef
9.
Zurück zum Zitat Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letters, 4(1), 46–49.CrossRef Liu, Y., Wang, L., Duy, T. T., Elkashlan, M., & Duong, T. Q. (2015). Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letters, 4(1), 46–49.CrossRef
10.
Zurück zum Zitat Hoang, T. M., Duong, T. Q., Vo, N. S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 28–31.CrossRef Hoang, T. M., Duong, T. Q., Vo, N. S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 28–31.CrossRef
11.
Zurück zum Zitat Wang, W., Teh, K. C., & Li, K. H. (2016). Generalized relay selection for improved security in cooperative DF relay networks. IIEEE Wireless Communications Letters, 5(1), 28–31.CrossRef Wang, W., Teh, K. C., & Li, K. H. (2016). Generalized relay selection for improved security in cooperative DF relay networks. IIEEE Wireless Communications Letters, 5(1), 28–31.CrossRef
12.
Zurück zum Zitat Bouallegue, T., & Sethom, K. (2017). Green and secure relay selection algorithm in cooperative networks. In Sixth international conference on communications and networking (ComNet), Hammamet, Tunisia. Bouallegue, T., & Sethom, K. (2017). Green and secure relay selection algorithm in cooperative networks. In Sixth international conference on communications and networking (ComNet), Hammamet, Tunisia.
13.
Zurück zum Zitat Wang, K., Yuan, L., Miyazaki, T., Zeng, D., Guo, S., & Sun, Y. (2017). Strategic antieavesdropping game for physical layer security in wireless cooperative networks. IEEE Transactions on Vehicular Technology, 66(10), 9448–9457.CrossRef Wang, K., Yuan, L., Miyazaki, T., Zeng, D., Guo, S., & Sun, Y. (2017). Strategic antieavesdropping game for physical layer security in wireless cooperative networks. IEEE Transactions on Vehicular Technology, 66(10), 9448–9457.CrossRef
14.
Zurück zum Zitat Lee, J. H. (2015). Cooperative relaying protocol for improving physical layer security in wireless decode-and-forward relaying networks. Wireless Personal Communications, 83(4), 3033–3044.CrossRef Lee, J. H. (2015). Cooperative relaying protocol for improving physical layer security in wireless decode-and-forward relaying networks. Wireless Personal Communications, 83(4), 3033–3044.CrossRef
15.
Zurück zum Zitat Guo, H., Yang, Z., Zhang, L., Zhu, J., & Zou, Y. (2017). Joint cooperative beamforming and jamming for physical-layer security of decode-and-forward relay networks. IEEE Access, 5, 19620–19630.CrossRef Guo, H., Yang, Z., Zhang, L., Zhu, J., & Zou, Y. (2017). Joint cooperative beamforming and jamming for physical-layer security of decode-and-forward relay networks. IEEE Access, 5, 19620–19630.CrossRef
16.
Zurück zum Zitat Zhang, C., Ge, J., Xia, Z., & Du, H. (2017). Graph theory based cooperative transmission for physical-layer security in 5G large-scale wireless relay networks. IEEE Access, 5, 21640–21649.CrossRef Zhang, C., Ge, J., Xia, Z., & Du, H. (2017). Graph theory based cooperative transmission for physical-layer security in 5G large-scale wireless relay networks. IEEE Access, 5, 21640–21649.CrossRef
17.
Zurück zum Zitat Saeidi-Khabisi, F. S., Vakili, V. T., & Abbasi-Moghadam, D. (2017). Improving the physical layer security in cooperative networks with multiple eavesdroppers. Wireless Personal Communications, 95(3), 3295–3320.CrossRef Saeidi-Khabisi, F. S., Vakili, V. T., & Abbasi-Moghadam, D. (2017). Improving the physical layer security in cooperative networks with multiple eavesdroppers. Wireless Personal Communications, 95(3), 3295–3320.CrossRef
18.
Zurück zum Zitat Rahmanpour, A., Vakili, V. T., & Razavizadeh, S. M. (2017). Enhancement of physical layer security using destination artificial noise based on outage probability. Wireless Personal Communications, 95(2), 1553–1565.CrossRef Rahmanpour, A., Vakili, V. T., & Razavizadeh, S. M. (2017). Enhancement of physical layer security using destination artificial noise based on outage probability. Wireless Personal Communications, 95(2), 1553–1565.CrossRef
19.
Zurück zum Zitat Qing, L., Guangyao, H., & Xiaomei, F. (2018). Physical layer security in multi-hop AF relay network based on compressed sensing. IEEE Communications Letters, 22(9), 1882–1885.CrossRef Qing, L., Guangyao, H., & Xiaomei, F. (2018). Physical layer security in multi-hop AF relay network based on compressed sensing. IEEE Communications Letters, 22(9), 1882–1885.CrossRef
20.
Zurück zum Zitat Nguyen, B. V., & Kim, K. (2015). Secrecy outage probability of optimal relay selection for secure AnF cooperative networks. IEEE Communications Letters, 19(12), 2086–2089.CrossRef Nguyen, B. V., & Kim, K. (2015). Secrecy outage probability of optimal relay selection for secure AnF cooperative networks. IEEE Communications Letters, 19(12), 2086–2089.CrossRef
21.
Zurück zum Zitat Zou, Y., Champagne, B., Zhu, W. P., & Hanzo, L. (2015). Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Transactions on Communications, 63(1), 215–228.CrossRef Zou, Y., Champagne, B., Zhu, W. P., & Hanzo, L. (2015). Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Transactions on Communications, 63(1), 215–228.CrossRef
22.
Zurück zum Zitat Amarasuriya, G., Ardakani, M., & Tellambura, C. (2010). Output-threshold multiple relay selection scheme for cooperative wireless networks. IEEE Transactions on Vehicular Technology, 59(6), 3091–3097.CrossRef Amarasuriya, G., Ardakani, M., & Tellambura, C. (2010). Output-threshold multiple relay selection scheme for cooperative wireless networks. IEEE Transactions on Vehicular Technology, 59(6), 3091–3097.CrossRef
23.
Zurück zum Zitat Ikki, S., & Ahmed, M. H. (2007). Performance analysis of cooperative diversity wireless networks over Nakagami-\(m\) fading channel. IEEE Communications Letters, 11(4), 334–336.CrossRef Ikki, S., & Ahmed, M. H. (2007). Performance analysis of cooperative diversity wireless networks over Nakagami-\(m\) fading channel. IEEE Communications Letters, 11(4), 334–336.CrossRef
24.
Zurück zum Zitat Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). San Diego: Academic Press.MATH Gradshteyn, I., & Ryzhik, I. (2007). Table of integrals, series, and products (7th ed.). San Diego: Academic Press.MATH
25.
Zurück zum Zitat Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels: A unified approach to performance analysis (2nd ed.). New York: Wiley. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels: A unified approach to performance analysis (2nd ed.). New York: Wiley.
Metadaten
Titel
Secrecy Performance of Amplify-and-Forward Relay Networks with Relay Selection under Nakagami-m Fading
verfasst von
Rashmi Datta
Devendra S. Gurjar
T. K. Manohar Reddy
Sonu K. Chaupal
Manish Mandloi
Ashraf Hossain
Publikationsdatum
25.01.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07147-y

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

BriefCommunication

Dark Web: A Web of Crimes

Neuer Inhalt