Skip to main content
Erschienen in: Wireless Networks 2/2020

22.10.2018

Secure communication with energy harvesting multiple half-duplex DF relays assisted with jamming

verfasst von: Shashibhushan Sharma, Sanjay Dhar Roy, Sumit Kundu

Erschienen in: Wireless Networks | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Physical layer security in relay based cooperative networks is a promising approach to maintain confidentiality of information. In this paper, secrecy performance of a dual hop network, with multiple energy harvesting decode and forward (DF) relays, has been analyzed where an eavesdropper also receives the information from the transmission of a selected relay. A selected DF relay harvests energy based on power splitting (PS) scheme in the first time slot. In the second time slot, the selected DF relay transmits the information as well as jamming signals, only when it has harvested sufficient power as decided by a threshold, based on the outage constraint of the network. The secrecy outage probability (SOP) under some assumed conditions, termed as a conditional SOP (CSOP), has been evaluated in closed form. Performance regarding the CSOP increases with increase in transmits power of the source, threshold outage rate, number of relay and energy conversion efficiency, whereas it decreases with an increase in threshold secrecy rate. We indicate the optimal value of PS factor for harvesting energy and the optimal value of a fraction of harvested energy devoted to information signal transmission at which the CSOP is minimum. The SOP without any condition has also been evaluated with and without jamming. The results shows that the CSOP yields better results than the SOP. It is observed that the CSOP with jamming is better than the SOP with jamming by 49.12% for 1 bits/s/Hz threshold secrecy rate and by 81.94% for a threshold secrecy rate of 0.5 bits/s/Hz, respectively at 10 dBW of the source transmits power. A MATLAB based simulation is used to verify our analytical works of the CSOP and the SOP with jamming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.MathSciNetCrossRef Leung-Yan-Cheong, S. K., & Hellman, M. E. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.MathSciNetCrossRef
3.
Zurück zum Zitat Bloch, M., Member, S., Barros, J., Rodrigues, M. R. D., & Mclaughlin, S. W. (2008). Wireless information-theoretic. Security, 54(6), 2515–2534.MathSciNetMATH Bloch, M., Member, S., Barros, J., Rodrigues, M. R. D., & Mclaughlin, S. W. (2008). Wireless information-theoretic. Security, 54(6), 2515–2534.MathSciNetMATH
4.
Zurück zum Zitat Zhou, X., McKay, M. R., Maham, B., & Hjorungnes, A. (2011). Rethinking the secrecy outage formulation: A secure transmission design perspective. IEEE Communications Letters, 15(3), 302–304.CrossRef Zhou, X., McKay, M. R., Maham, B., & Hjorungnes, A. (2011). Rethinking the secrecy outage formulation: A secure transmission design perspective. IEEE Communications Letters, 15(3), 302–304.CrossRef
5.
Zurück zum Zitat Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13(3), 443–461.CrossRef Sudevalayam, S., & Kulkarni, P. (2011). Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys and Tutorials, 13(3), 443–461.CrossRef
6.
Zurück zum Zitat Gong, J., Chen, X., Xia, M., Member, J. G., Member, X. C., & Member, M. X. (2018). Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Transactions on Wireless Communications, 17(5), 3046–3058.CrossRef Gong, J., Chen, X., Xia, M., Member, J. G., Member, X. C., & Member, M. X. (2018). Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Transactions on Wireless Communications, 17(5), 3046–3058.CrossRef
7.
Zurück zum Zitat Lu, X., Wang, P., Niyato, D., Kim, D. I., Han, Z., & Engineering, C. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRef Lu, X., Wang, P., Niyato, D., Kim, D. I., Han, Z., & Engineering, C. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRef
8.
Zurück zum Zitat Ku, M., Li, W., Chen, Y., Member, S., & Liu, K. J. R. (2016). Advances in energy harvesting communication: Past, present, and future challenges. IEEE Communications Surveys and Tutorials, 18(2), 1384–1412.CrossRef Ku, M., Li, W., Chen, Y., Member, S., & Liu, K. J. R. (2016). Advances in energy harvesting communication: Past, present, and future challenges. IEEE Communications Surveys and Tutorials, 18(2), 1384–1412.CrossRef
9.
Zurück zum Zitat Luo, Y., Zhang, J., & Letaief, K. B. (2013). Optimal scheduling and power allocation for two-hop energy harvesting communication systems. IEEE Transactions on Wireless Communications, 12(9), 4729–4741.CrossRef Luo, Y., Zhang, J., & Letaief, K. B. (2013). Optimal scheduling and power allocation for two-hop energy harvesting communication systems. IEEE Transactions on Wireless Communications, 12(9), 4729–4741.CrossRef
10.
Zurück zum Zitat Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRef
11.
Zurück zum Zitat Son, P. N., & Kong, H. Y. (2015). Cooperative communication with energy-harvesting relays under physical layer security. IET Communications, 9(17), 2131–2139.CrossRef Son, P. N., & Kong, H. Y. (2015). Cooperative communication with energy-harvesting relays under physical layer security. IET Communications, 9(17), 2131–2139.CrossRef
12.
Zurück zum Zitat Kalamkar, S. S., & Banerjee, A. (2017). Secure communication via a wireless energy harvesting untrusted relay. IEEE Transactions on Vehicular Technology, 66(3), 2199–2213.CrossRef Kalamkar, S. S., & Banerjee, A. (2017). Secure communication via a wireless energy harvesting untrusted relay. IEEE Transactions on Vehicular Technology, 66(3), 2199–2213.CrossRef
13.
Zurück zum Zitat Gupta, V., Kalamkar, S. S., & Banerjee, A. (2017). On secure communication using RF energy harvesting two-way untrusted relay. arXiv:1708.07989v1. Gupta, V., Kalamkar, S. S., & Banerjee, A. (2017). On secure communication using RF energy harvesting two-way untrusted relay. arXiv:​1708.​07989v1.
14.
Zurück zum Zitat Dong, L., Yousefi, H., & Jafarkhani, H. (2011). Cooperative jamming and Power allocation for wireless relay network in presence of eavesdropper. In 2011 IEEE international conference on communications (ICC), Kyoto, 1–5. Dong, L., Yousefi, H., & Jafarkhani, H. (2011). Cooperative jamming and Power allocation for wireless relay network in presence of eavesdropper. In 2011 IEEE international conference on communications (ICC), Kyoto, 1–5.
15.
Zurück zum Zitat Sun, L., Zhang, T., Li, Y., & Niu, H. (2012). Performance study of two-hop amplify-and-forward systems with untrustworthy relay nodes. IEEE Transactions on Vehicular Technology, 61(8), 3801–3807.CrossRef Sun, L., Zhang, T., Li, Y., & Niu, H. (2012). Performance study of two-hop amplify-and-forward systems with untrustworthy relay nodes. IEEE Transactions on Vehicular Technology, 61(8), 3801–3807.CrossRef
16.
Zurück zum Zitat Liu, Y., Li, J., & Petropulu, A. P. (2013). Destination assisted cooperative jamming for wireless physical-layer security. IEEE Transactions on Information Forensics and Security, 8(4), 682–694.CrossRef Liu, Y., Li, J., & Petropulu, A. P. (2013). Destination assisted cooperative jamming for wireless physical-layer security. IEEE Transactions on Information Forensics and Security, 8(4), 682–694.CrossRef
17.
Zurück zum Zitat Cao, K., Cai, Y., Wu, Y., & Yang, W. (2017). Cooperative jamming for secure communication with finite alphabet inputs. IEEE Communications Letters, 21(9), 2025–2028.CrossRef Cao, K., Cai, Y., Wu, Y., & Yang, W. (2017). Cooperative jamming for secure communication with finite alphabet inputs. IEEE Communications Letters, 21(9), 2025–2028.CrossRef
18.
Zurück zum Zitat Zhang, G., Xu, J., Wu, Q., Cui, M., Li, X., & Lin, F. (2018). Wireless powered cooperative jamming for secure OFDM system. IEEE Transactions on Vehicular Technology, 67(2), 1331–1346.CrossRef Zhang, G., Xu, J., Wu, Q., Cui, M., Li, X., & Lin, F. (2018). Wireless powered cooperative jamming for secure OFDM system. IEEE Transactions on Vehicular Technology, 67(2), 1331–1346.CrossRef
19.
Zurück zum Zitat Mamaghani, M. T., Kuhestani, A., & Wong, K.-K. (2018). Energy harvesting based secure two-way communication using an untrusted relay, 1–14. arXiv:1708.06437v2 [cs. CR]. Mamaghani, M. T., Kuhestani, A., & Wong, K.-K. (2018). Energy harvesting based secure two-way communication using an untrusted relay, 1–14. arXiv:​1708.​06437v2 [cs. CR].
20.
Zurück zum Zitat Salem, A., Hamdi, K. A., & Rabie, K. M. (2016). Physical layer security with RF energy harvesting in AF multi-antenna relaying networks. IEEE Transactions on Communications, 64(7), 3025–3038.CrossRef Salem, A., Hamdi, K. A., & Rabie, K. M. (2016). Physical layer security with RF energy harvesting in AF multi-antenna relaying networks. IEEE Transactions on Communications, 64(7), 3025–3038.CrossRef
21.
Zurück zum Zitat Raghuwanshi, S., & Maji, P. (2016). Secrecy performance of a dual hop cognitive relay network with an energy harvesting relay. In 2016 International conference on advances in computing, communications and informatics (ICACCI), Jaipur, India (pp. 1622–1627). Raghuwanshi, S., & Maji, P. (2016). Secrecy performance of a dual hop cognitive relay network with an energy harvesting relay. In 2016 International conference on advances in computing, communications and informatics (ICACCI), Jaipur, India (pp. 1622–1627).
22.
Zurück zum Zitat Hoang, T. M., Duong, T. Q., Vo, N. S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 174–177.CrossRef Hoang, T. M., Duong, T. Q., Vo, N. S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 174–177.CrossRef
23.
Zurück zum Zitat Ouyang, N., Jiang, X., & Bai, E. (2017). Destination assisted jamming and beamforming for improving the security of AF relay systems. IEEE Access, 5, 4125–4131.CrossRef Ouyang, N., Jiang, X., & Bai, E. (2017). Destination assisted jamming and beamforming for improving the security of AF relay systems. IEEE Access, 5, 4125–4131.CrossRef
24.
Zurück zum Zitat Vo, V. N., Nguyen, T. G., So-In, C., Baig, Z. A., & Sanguanpong, S. (2018). Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy. IEEE Access, 6, 23406–23419.CrossRef Vo, V. N., Nguyen, T. G., So-In, C., Baig, Z. A., & Sanguanpong, S. (2018). Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy. IEEE Access, 6, 23406–23419.CrossRef
25.
Zurück zum Zitat Zhang, J., Pan, G., & Xie, Y. (2018). Secrecy analysis of wireless-powered multi-antenna relaying system with nonlinear energy harvesters and imperfect CSI. IEEE Transactions on Green Communications and Networking, 2(2), 460–470.CrossRef Zhang, J., Pan, G., & Xie, Y. (2018). Secrecy analysis of wireless-powered multi-antenna relaying system with nonlinear energy harvesters and imperfect CSI. IEEE Transactions on Green Communications and Networking, 2(2), 460–470.CrossRef
26.
Zurück zum Zitat Zhao, L., & Zheng, K. (2016). Cooperative energy broadcasting system with massive MIMO. IEEE Communications Letters, 20(6), 1247–1250.CrossRef Zhao, L., & Zheng, K. (2016). Cooperative energy broadcasting system with massive MIMO. IEEE Communications Letters, 20(6), 1247–1250.CrossRef
27.
Zurück zum Zitat Chen, L., Yu, F. R., Ji, H., Rong, B., Li, X., & Leung, V. C. M. (2016). Green full-duplex self-backhaul and energy harvesting small cell networks with massive MIMO. IEEE Journal on Selected Areas in Communications, 34(12), 3709–3724.CrossRef Chen, L., Yu, F. R., Ji, H., Rong, B., Li, X., & Leung, V. C. M. (2016). Green full-duplex self-backhaul and energy harvesting small cell networks with massive MIMO. IEEE Journal on Selected Areas in Communications, 34(12), 3709–3724.CrossRef
28.
Zurück zum Zitat Amjad, M., Akhtar, F., Rehmani, M. H., Reisslein, M., & Umer, T. (2017). Full-duplex communication in cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(4), 2158–2191.CrossRef Amjad, M., Akhtar, F., Rehmani, M. H., Reisslein, M., & Umer, T. (2017). Full-duplex communication in cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(4), 2158–2191.CrossRef
29.
Zurück zum Zitat Zheng, B., Wen, M., Wang, C. X., et al. (2018). Secure NOMA based two-way relay networks using artificial noise and full duplex. IEEE Journal on Selected Areas in Communications, XX(XX), 1–14.CrossRef Zheng, B., Wen, M., Wang, C. X., et al. (2018). Secure NOMA based two-way relay networks using artificial noise and full duplex. IEEE Journal on Selected Areas in Communications, XX(XX), 1–14.CrossRef
30.
Zurück zum Zitat Tran, H., Zepernick, H. J., & Phan, H. (2013). Cognitive proactive and reactive df relaying schemes under joint outage and peak transmit power constraints. IEEE Communications Letters, 17(8), 1548–1551.CrossRef Tran, H., Zepernick, H. J., & Phan, H. (2013). Cognitive proactive and reactive df relaying schemes under joint outage and peak transmit power constraints. IEEE Communications Letters, 17(8), 1548–1551.CrossRef
31.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.MATH
Metadaten
Titel
Secure communication with energy harvesting multiple half-duplex DF relays assisted with jamming
verfasst von
Shashibhushan Sharma
Sanjay Dhar Roy
Sumit Kundu
Publikationsdatum
22.10.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1859-0

Weitere Artikel der Ausgabe 2/2020

Wireless Networks 2/2020 Zur Ausgabe

Neuer Inhalt