Skip to main content

2014 | OriginalPaper | Buchkapitel

4. Sedimentation of Particulate Systems

verfasst von : Fernando Concha A.

Erschienen in: Solid-Liquid Separation in the Mining Industry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with sedimentation of particulate systems considered as discrete media. Sedimentation is the settling of a particle or suspension of particles in a fluid due to the effect of an external force such as gravity, centrifugal force or any other body force. Discrete sedimentation has been successful in establishing constitutive equations for continuous sedimentation processes. The foundation of the motion of particles in fluids is discussed in different flow regimes, Euler’s flow, Stokes flow and flows with a boundary layer. Starting from the sedimentation of a sphere in an unbounded fluid, a complete analysis is made of the settling of individual spherical particles and suspensions. The results are extended to isometric particles and to arbitrarily shaped particles. Sphericity as a shape factor is used to describe the form of isometric particles. A hydrodynamic sphericity must be defined for particles with arbitrary shapes by performing sedimentation or fluidization experiments, calculating the drag coefficient for the particles using the volume equivalent diameter and obtaining a sphericity defined for isometric particles that fits experimental values. A modified drag coefficient and sedimentation velocities permits grouping all sedimentation results in one single equation for particles of any shape.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abraham, F. F. (1970). Functional dependence of the drag coefficient of a sphere on Reynolds number. Physics of Fluids, 13, 2194–2195.CrossRef Abraham, F. F. (1970). Functional dependence of the drag coefficient of a sphere on Reynolds number. Physics of Fluids, 13, 2194–2195.CrossRef
Zurück zum Zitat Barker, H. (1951). The effect of shape and density on the free settling rates of particles at high Reynolds Numbers, Ph.D. Thesis, University of Utah, Table 7, pp. 124–132; Table 9, pp. 148–153. Barker, H. (1951). The effect of shape and density on the free settling rates of particles at high Reynolds Numbers, Ph.D. Thesis, University of Utah, Table 7, pp. 124–132; Table 9, pp. 148–153.
Zurück zum Zitat Barnea, E., & Mitzrahi, J. (1973). A generalized approach to the fluid dynamics of particulate systems, 1. General correlation for fluidization and sedimentation in solid multiparticle systems. Chemical Engineering Journal, 5, 171–189.CrossRef Barnea, E., & Mitzrahi, J. (1973). A generalized approach to the fluid dynamics of particulate systems, 1. General correlation for fluidization and sedimentation in solid multiparticle systems. Chemical Engineering Journal, 5, 171–189.CrossRef
Zurück zum Zitat Barnea, E., & Mednick, R. L. (1975). Correlation for minimum fluidization velocity. Transactions on Institute of Chemical Engineers, 53, 278–281. Barnea, E., & Mednick, R. L. (1975). Correlation for minimum fluidization velocity. Transactions on Institute of Chemical Engineers, 53, 278–281.
Zurück zum Zitat Batchelor, G. K. (1967). An introduction for fluid dynamics (p. 262). Cambridge: Cambridge University Press. Batchelor, G. K. (1967). An introduction for fluid dynamics (p. 262). Cambridge: Cambridge University Press.
Zurück zum Zitat Brauer, H., & Sucker, D. (1976). Umströmung von Platten, Zylindern un Kugeln. Chemie Ingenieur Technik, 48, 665–671.CrossRef Brauer, H., & Sucker, D. (1976). Umströmung von Platten, Zylindern un Kugeln. Chemie Ingenieur Technik, 48, 665–671.CrossRef
Zurück zum Zitat Cabtree, L. F. (1963). Three dimensional boundary layers. In L. Rosenhead (Ed.), Laminar boundary layers, Oxford: Oxford Univesity press, p. 423. Cabtree, L. F. (1963). Three dimensional boundary layers. In L. Rosenhead (Ed.), Laminar boundary layers, Oxford: Oxford Univesity press, p. 423.
Zurück zum Zitat Chabra, R. P., Agarwal, L., & Sinha, N. K. (1999). Drag on non-spherical particles: An evaluation of available methods. Powder Technology, 101, 288–295.CrossRef Chabra, R. P., Agarwal, L., & Sinha, N. K. (1999). Drag on non-spherical particles: An evaluation of available methods. Powder Technology, 101, 288–295.CrossRef
Zurück zum Zitat Concha, F., & Almendra, E. R. (1979a). Settling velocities of particulate systems, 1. Settling velocities of individual spherical particles. International Journal of Mineral Processing, 5, 349–367.CrossRef Concha, F., & Almendra, E. R. (1979a). Settling velocities of particulate systems, 1. Settling velocities of individual spherical particles. International Journal of Mineral Processing, 5, 349–367.CrossRef
Zurück zum Zitat Concha, F., & Almendra, E. R. (1979b). Settling velocities of particulate systems, 2. Settling velocities of suspensions of spherical particles. International Journal of Mineral Processing, 6, 31–41.CrossRef Concha, F., & Almendra, E. R. (1979b). Settling velocities of particulate systems, 2. Settling velocities of suspensions of spherical particles. International Journal of Mineral Processing, 6, 31–41.CrossRef
Zurück zum Zitat Concha, F., & Barrientos, A. (1986). Settling velocities of particulate systems, 4. settling of no spherical isometric particles. International Journal of Mineral Processing, 18, 297–308.CrossRef Concha, F., & Barrientos, A. (1986). Settling velocities of particulate systems, 4. settling of no spherical isometric particles. International Journal of Mineral Processing, 18, 297–308.CrossRef
Zurück zum Zitat Concha, F., & Christiansen, A. (1986). Settling velocities of particulate systems, 5. Settling velocities of suspensiones of particles of arbitrary shape. International Journal of Mineral Processing, 18, 309–322.CrossRef Concha, F., & Christiansen, A. (1986). Settling velocities of particulate systems, 5. Settling velocities of suspensiones of particles of arbitrary shape. International Journal of Mineral Processing, 18, 309–322.CrossRef
Zurück zum Zitat Christiansen, E. B., & Barker, D. H. (1965). The effect of shape and density on the free settling rate of particles at high Reynolds numbers. AIChE Journal, 11(1), 145–151.CrossRef Christiansen, E. B., & Barker, D. H. (1965). The effect of shape and density on the free settling rate of particles at high Reynolds numbers. AIChE Journal, 11(1), 145–151.CrossRef
Zurück zum Zitat Darby, R. (1996). Determining settling rates of particles, Chemical Engineering, 109–112. Darby, R. (1996). Determining settling rates of particles, Chemical Engineering, 109–112.
Zurück zum Zitat Fage, A. (1937). Experiments on a sphere at critical Reynolds number (pp. 108, 423). London: Aeronautical Research Council, Reports and Memoranda, N°1766. Fage, A. (1937). Experiments on a sphere at critical Reynolds number (pp. 108, 423). London: Aeronautical Research Council, Reports and Memoranda, N°1766.
Zurück zum Zitat Flemmer, R. L., Pickett, J., & Clark, N. N. (1993). An experimental study on the effect of particle shape on fluidization behavior. Powder Technology, 77, 123–133.CrossRef Flemmer, R. L., Pickett, J., & Clark, N. N. (1993). An experimental study on the effect of particle shape on fluidization behavior. Powder Technology, 77, 123–133.CrossRef
Zurück zum Zitat Ganguly, U. P. (1990). On the prediction of terminal settling velocity in solids-liquid systems. International Journal of Mineral Processing, 29, 235–247.CrossRefMathSciNet Ganguly, U. P. (1990). On the prediction of terminal settling velocity in solids-liquid systems. International Journal of Mineral Processing, 29, 235–247.CrossRefMathSciNet
Zurück zum Zitat Ganser, G. H. (1993). A rational approach to drag prediction of spherical and non-spherical particles, 1993. Powder Technology, 77, 143–152.CrossRef Ganser, G. H. (1993). A rational approach to drag prediction of spherical and non-spherical particles, 1993. Powder Technology, 77, 143–152.CrossRef
Zurück zum Zitat Goldstein, S. (Ed.). (1965). Modern development in fluid dynamics (Vols. 1, 2, p. 702). New York: Dover. Goldstein, S. (Ed.). (1965). Modern development in fluid dynamics (Vols. 1, 2, p. 702). New York: Dover.
Zurück zum Zitat Haider, A., & Levenspiel, O. (1998). Drag coefficient and terminal velocity of spherical and non-spherical particles. Powder Technology, 58, 63–70.CrossRef Haider, A., & Levenspiel, O. (1998). Drag coefficient and terminal velocity of spherical and non-spherical particles. Powder Technology, 58, 63–70.CrossRef
Zurück zum Zitat Happel, J., & Brenner, H. (1965). Low Reynolds hydrodynamics (p. 220). NJ: Prentice-Hall Inc. Happel, J., & Brenner, H. (1965). Low Reynolds hydrodynamics (p. 220). NJ: Prentice-Hall Inc.
Zurück zum Zitat Heywood, H. (1962). Uniform and non-uniform motion of particles in fluids: Proceeding of the Symposium on the Interaction between Fluid and Particles, Institute of Chemical Engineering, London, pp. 1–8. Heywood, H. (1962). Uniform and non-uniform motion of particles in fluids: Proceeding of the Symposium on the Interaction between Fluid and Particles, Institute of Chemical Engineering, London, pp. 1–8.
Zurück zum Zitat Lapple, C. E., & Shepherd, C. B. (1940). Calculation of particle trajectories. Industrial and Engineering Chemistry, 32, 605.CrossRef Lapple, C. E., & Shepherd, C. B. (1940). Calculation of particle trajectories. Industrial and Engineering Chemistry, 32, 605.CrossRef
Zurück zum Zitat Lee, K., & Barrow, H. (1968). Transport process in flow around a sphere with particular reference to the transfer of mass. International Journal of Heat and Mass Transfer, 11, 1020. Lee, K., & Barrow, H. (1968). Transport process in flow around a sphere with particular reference to the transfer of mass. International Journal of Heat and Mass Transfer, 11, 1020.
Zurück zum Zitat Lighthill, M. J. (1963). Boundary layer theory. In L. Rosenhead (Ed.), Laminar boundary layers, Oxford: Oxford University, p. 87. Lighthill, M. J. (1963). Boundary layer theory. In L. Rosenhead (Ed.), Laminar boundary layers, Oxford: Oxford University, p. 87.
Zurück zum Zitat Massarani, G. (1984). Problemas em Sistemas Particulados, Blücher Ltda., Río de Janeiro, Brazil, pp. 102–109. Massarani, G. (1984). Problemas em Sistemas Particulados, Blücher Ltda., Río de Janeiro, Brazil, pp. 102–109.
Zurück zum Zitat McDonal, J. E. (1954). Journal of Applied Meteorology, 11, p. 478. McDonal, J. E. (1954). Journal of Applied Meteorology, 11, p. 478.
Zurück zum Zitat Meksyn, D. (1961). New methods in boundary layer theory, New York. Meksyn, D. (1961). New methods in boundary layer theory, New York.
Zurück zum Zitat Newton, I. (1687). Filosofiae naturalis principia mathematica, London. Newton, I. (1687). Filosofiae naturalis principia mathematica, London.
Zurück zum Zitat Nguyen, A. V., Stechemesser, H., Zobel, G., & Schulze, H. J. (1997). An improved formula for terminal velocity of rigid spheres. International Journal of Mineral Processing, 50, 53–61.CrossRef Nguyen, A. V., Stechemesser, H., Zobel, G., & Schulze, H. J. (1997). An improved formula for terminal velocity of rigid spheres. International Journal of Mineral Processing, 50, 53–61.CrossRef
Zurück zum Zitat Richardson, J. F., & Zaki, W. N. (1954). Sedimentation and fluidization: Part I. Transactions on Institute of Chemical Engineers, 32, 35–53. Richardson, J. F., & Zaki, W. N. (1954). Sedimentation and fluidization: Part I. Transactions on Institute of Chemical Engineers, 32, 35–53.
Zurück zum Zitat Pettyjohn, E. S., & Christiansen, E. B. (1948). Effect of particle shape on free-settling of isometric particles. Chemical Engineering Progress, 44(2), 157–172. Pettyjohn, E. S., & Christiansen, E. B. (1948). Effect of particle shape on free-settling of isometric particles. Chemical Engineering Progress, 44(2), 157–172.
Zurück zum Zitat Rosenhead, L. (ed) (1963). Laminar boundary layers (pp. 87, 423, 687). Oxford: Oxford University Press. Rosenhead, L. (ed) (1963). Laminar boundary layers (pp. 87, 423, 687). Oxford: Oxford University Press.
Zurück zum Zitat Schlichting, H. (1968). Boundary layer theory. New York: McGraw-Hill. 747. Schlichting, H. (1968). Boundary layer theory. New York: McGraw-Hill. 747.
Zurück zum Zitat Stokes, G. G. (1844). On the theories of internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Transactions on Cambridge Philosophical Society, 8(9), 287–319. Stokes, G. G. (1844). On the theories of internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Transactions on Cambridge Philosophical Society, 8(9), 287–319.
Zurück zum Zitat Taneda, S. (1956). Rep. Res. Inst. Appl. Mech., 4, 99. Taneda, S. (1956). Rep. Res. Inst. Appl. Mech., 4, 99.
Zurück zum Zitat Thomson, T., & Clark, N. N. (1991). A holistic approach to particle drag prediction. Powder Technology, 67, 57–66.CrossRef Thomson, T., & Clark, N. N. (1991). A holistic approach to particle drag prediction. Powder Technology, 67, 57–66.CrossRef
Zurück zum Zitat Tomotika, A.R.A. (1936). Reports and memoranda N°1678, See also Goldstein 1965, p. 498. Tomotika, A.R.A. (1936). Reports and memoranda N°1678, See also Goldstein 1965, p. 498.
Zurück zum Zitat Tory, E. M. (1996). Sedimentation of small particles in a viscous fluid. UK: Computational Mechanics Publications Inc. Tory, E. M. (1996). Sedimentation of small particles in a viscous fluid. UK: Computational Mechanics Publications Inc.
Zurück zum Zitat Tsakalis, K. G., & Stamboltzis, G. A. (2001). Prediction of the settling velocity of irregularly shaped particles. Minerals Engineering, 14(3), 349–357.CrossRef Tsakalis, K. G., & Stamboltzis, G. A. (2001). Prediction of the settling velocity of irregularly shaped particles. Minerals Engineering, 14(3), 349–357.CrossRef
Zurück zum Zitat Tourton, R., & Clark, N. N. (1987). An explicit relationship to predict spherical termninal velocity. Powder Technology, 53, 127–129.CrossRef Tourton, R., & Clark, N. N. (1987). An explicit relationship to predict spherical termninal velocity. Powder Technology, 53, 127–129.CrossRef
Zurück zum Zitat Tourton, R., & Levenspiel, O. (1986). A short Note on the drag correlation for spheres. Powder Technology, 47, 83–86.CrossRef Tourton, R., & Levenspiel, O. (1986). A short Note on the drag correlation for spheres. Powder Technology, 47, 83–86.CrossRef
Zurück zum Zitat Wadell, J. (1932). Volume shape and roundness of rock particles, Journal of Geology, 15, 43–451. Wadell, J. (1932). Volume shape and roundness of rock particles, Journal of Geology, 15, 43–451.
Zurück zum Zitat Wadell, J. (1934). The coefficient of resistance s a function of the Reynolds number for solids of various shapes, Journal of the Franklin Institute 217, 459–490. Wadell, J. (1934). The coefficient of resistance s a function of the Reynolds number for solids of various shapes, Journal of the Franklin Institute 217, 459–490.
Zurück zum Zitat Zens, F. A., & Othme, D. F. (1966). Fluidization and fluid-particle systems. New York: McGraw-Hill. Zens, F. A., & Othme, D. F. (1966). Fluidization and fluid-particle systems. New York: McGraw-Hill.
Zurück zum Zitat Zigrang, D. J., & Sylvester, N. D. (1981). An explicit equation for particle settling velocities in solid-liquid systems. AIChE Journal, 27, 1043–1044.CrossRef Zigrang, D. J., & Sylvester, N. D. (1981). An explicit equation for particle settling velocities in solid-liquid systems. AIChE Journal, 27, 1043–1044.CrossRef
Metadaten
Titel
Sedimentation of Particulate Systems
verfasst von
Fernando Concha A.
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-02484-4_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.