Skip to main content
Erschienen in: Shape Memory and Superelasticity 3/2020

03.08.2020 | Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper

Selective Laser Melting of NiTi Shape Memory Alloy: Processability, Microstructure, and Superelasticity

verfasst von: Carlo Alberto Biffi, Jacopo Fiocchi, Fabrizio Valenza, Paola Bassani, Ausonio Tuissi

Erschienen in: Shape Memory and Superelasticity | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, thanks to the growing interest regarding the manufacturing of 3D complex parts with integrated functionalities, the additive manufacturing of NiTi shape memory alloy is a challenging technological issue. Particularly, 3D printing of NiTi components requires a strong interaction between technological and metallurgical approaches, due to the significant correlation among the process conditions, the microstructure, and the functional performances. The goals of the present work are to define the processability of NiTi powder for realizing fully dense samples using Selective Laser Melting process and the correlation between the microstructure and the superelastic response of specimens processed in different process conditions. It was found that highest relative density values can be obtained for a laser fluence in the range 63–160 J/mm3. The resulting microstructures exhibit variable degrees of orientations, according to the different cooling rates and melt pool size, specific for each condition. Finally, mechanical testing in compression indicated that the as-built alloy exhibits a limited superelastic behavior. A typical flag-like behavior, characterized by 6% of complete recoverable strain, was obtained through heat treatment at 500 °C. This suggests that the microstructure of as-built samples is highly efficient to promote superelasticity after annealing.
Literatur
1.
Zurück zum Zitat Funakubo H (1987) Shape memory alloys. Gordon and Breach Science Publishers, Amsterdam Funakubo H (1987) Shape memory alloys. Gordon and Breach Science Publishers, Amsterdam
2.
Zurück zum Zitat Casati R, Vedani M, Tuissi A (2014) Thermal cycling of stress-induced martensite for high-performance shape memory effect. Scr Mater 80:13–16CrossRef Casati R, Vedani M, Tuissi A (2014) Thermal cycling of stress-induced martensite for high-performance shape memory effect. Scr Mater 80:13–16CrossRef
3.
Zurück zum Zitat Nishida M, Wayman C, Honma T (1986) Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall Mater Trans 17:1505–1515CrossRef Nishida M, Wayman C, Honma T (1986) Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall Mater Trans 17:1505–1515CrossRef
4.
Zurück zum Zitat Elahinia M, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57:911–946CrossRef Elahinia M, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of NiTi implants: a review. Prog Mater Sci 57:911–946CrossRef
5.
Zurück zum Zitat Weinert K, Petzoldt V (2004) Machining of NiTi based shape memory alloys. Mater Sci Eng A 378:180–184CrossRef Weinert K, Petzoldt V (2004) Machining of NiTi based shape memory alloys. Mater Sci Eng A 378:180–184CrossRef
6.
Zurück zum Zitat Donohue B (2009) Developing a good memory—nitinol shape memory alloy, Today’s Machining World 42–48 Donohue B (2009) Developing a good memory—nitinol shape memory alloy, Today’s Machining World 42–48
7.
Zurück zum Zitat Manjaiah M, Narendranath S, Basavarajappa S (2014) Review on non-conventional machining of shape memory alloys. Trans Nonferrous Met Soc 24:12–21CrossRef Manjaiah M, Narendranath S, Basavarajappa S (2014) Review on non-conventional machining of shape memory alloys. Trans Nonferrous Met Soc 24:12–21CrossRef
8.
Zurück zum Zitat Bharathi Kannan TD, Ramesh T, Sathiya P (2016) A Review of similar and dissimilar micro-joining of nitinol. JOM 68:1227–1245CrossRef Bharathi Kannan TD, Ramesh T, Sathiya P (2016) A Review of similar and dissimilar micro-joining of nitinol. JOM 68:1227–1245CrossRef
9.
Zurück zum Zitat Oliveira JP, Miranda RM, Braz Fernandes FM (2017) Welding and joining of NiTi shape memory alloys: a review. Prog Mater Si 88:412–466CrossRef Oliveira JP, Miranda RM, Braz Fernandes FM (2017) Welding and joining of NiTi shape memory alloys: a review. Prog Mater Si 88:412–466CrossRef
10.
Zurück zum Zitat Falvo A, Forgiuele FM, Maletta C (2005) Laser welding of a NiTi alloy: mechanical and shape memory alloy. Mater Sci Eng A 412:235–240CrossRef Falvo A, Forgiuele FM, Maletta C (2005) Laser welding of a NiTi alloy: mechanical and shape memory alloy. Mater Sci Eng A 412:235–240CrossRef
11.
Zurück zum Zitat Biffi CA, Tuissi A (2017) Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing. Smart Mater Struct 26:035006CrossRef Biffi CA, Tuissi A (2017) Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing. Smart Mater Struct 26:035006CrossRef
12.
Zurück zum Zitat Tuissi A, Besseghini S, Ranucci T, Squatrito F, Pozzi M (1999) Effect of Nd-YAG laser welding on the functional properties of the Ni–49.6 at.%Ti. Mater Sci Eng A 273–275:813–817CrossRef Tuissi A, Besseghini S, Ranucci T, Squatrito F, Pozzi M (1999) Effect of Nd-YAG laser welding on the functional properties of the Ni–49.6 at.%Ti. Mater Sci Eng A 273–275:813–817CrossRef
13.
Zurück zum Zitat Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing—a review. Prog Mater Sci 83:630–663CrossRef Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing—a review. Prog Mater Sci 83:630–663CrossRef
14.
Zurück zum Zitat Van Humbeeck J (2018) Additive manufacturing of shape memory alloys. Shape Mem Superelasticity 4–2:309–312CrossRef Van Humbeeck J (2018) Additive manufacturing of shape memory alloys. Shape Mem Superelasticity 4–2:309–312CrossRef
15.
Zurück zum Zitat Biffi CA, Tuissi A (2017) Stato dell’arte sulle tecniche di produzione additiva per metalli. Metall Ital 1:5–10 Biffi CA, Tuissi A (2017) Stato dell’arte sulle tecniche di produzione additiva per metalli. Metall Ital 1:5–10
16.
Zurück zum Zitat Mitchell A, Lafont U, Hołyńska U, Semprimoschnig U (2018) Additive manufacturing—a review of 4D printing and future applications. Addit Manuf 24:606–626 Mitchell A, Lafont U, Hołyńska U, Semprimoschnig U (2018) Additive manufacturing—a review of 4D printing and future applications. Addit Manuf 24:606–626
17.
Zurück zum Zitat Bormann T, Schumacher R, Müller B, Mertmann M, De Wild M (2012) Tailoring selective laser melting process parameters for NiTi implants. J Mater Eng Perform 21:2519–2524CrossRef Bormann T, Schumacher R, Müller B, Mertmann M, De Wild M (2012) Tailoring selective laser melting process parameters for NiTi implants. J Mater Eng Perform 21:2519–2524CrossRef
18.
Zurück zum Zitat Saedi S, Turabi AS, Andani MT, Haberland C, Karaca H, Elahinia M (2016) The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd 677:204–210CrossRef Saedi S, Turabi AS, Andani MT, Haberland C, Karaca H, Elahinia M (2016) The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd 677:204–210CrossRef
19.
Zurück zum Zitat Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, Hinojos A, Ramazani A, Kundin J, Mills MJ, Karaca H, Elahinia M (2019) Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep 9:41CrossRef Shayesteh Moghaddam N, Saedi S, Amerinatanzi A, Hinojos A, Ramazani A, Kundin J, Mills MJ, Karaca H, Elahinia M (2019) Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep 9:41CrossRef
20.
Zurück zum Zitat Zhou Q, Dilawer Hayat M, Chen G, Cai S, Qu X, Tang H, Cao P (2019) Selective electron beam melting of NiTi: microstructure, phase transformation and mechanical properties. Mater Sci Eng A 744:290–298CrossRef Zhou Q, Dilawer Hayat M, Chen G, Cai S, Qu X, Tang H, Cao P (2019) Selective electron beam melting of NiTi: microstructure, phase transformation and mechanical properties. Mater Sci Eng A 744:290–298CrossRef
21.
Zurück zum Zitat Hamilton RF, Bimber BA, Palmer TA (2018) Correlating microstructure and superelasticity of directed energy deposition additive manufactured Ni-rich NiTi alloys. J Alloys Compd 739:712–722CrossRef Hamilton RF, Bimber BA, Palmer TA (2018) Correlating microstructure and superelasticity of directed energy deposition additive manufactured Ni-rich NiTi alloys. J Alloys Compd 739:712–722CrossRef
22.
Zurück zum Zitat Wang C, Tan XP, Du Z, Chandra S, Sun Z, Lim CWJ, Tor SB, Lim CS, Wong CH (2019) Additive manufacturing of NiTi shape memory alloys using pre-mixed powders. J Mater Process Technol 271:152–161CrossRef Wang C, Tan XP, Du Z, Chandra S, Sun Z, Lim CWJ, Tor SB, Lim CS, Wong CH (2019) Additive manufacturing of NiTi shape memory alloys using pre-mixed powders. J Mater Process Technol 271:152–161CrossRef
23.
Zurück zum Zitat Saedi S, Moghaddam NS, Amerinatanzi A, Elahinia M, Karaca HE (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 14:552–560CrossRef Saedi S, Moghaddam NS, Amerinatanzi A, Elahinia M, Karaca HE (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 14:552–560CrossRef
24.
Zurück zum Zitat Speirs M, Wang X, Van Baelen S et al (2016) On the Transformation behavior of NiTi shape-memory alloy produced by SLM. Shape Mem Superelasticity 2:310–316CrossRef Speirs M, Wang X, Van Baelen S et al (2016) On the Transformation behavior of NiTi shape-memory alloy produced by SLM. Shape Mem Superelasticity 2:310–316CrossRef
25.
Zurück zum Zitat Shiva S, Palani IA, Mishra SK, Paul CP, Kukreja LM (2015) Investigation on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing. Opt Laser Technol 69:44–51CrossRef Shiva S, Palani IA, Mishra SK, Paul CP, Kukreja LM (2015) Investigation on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing. Opt Laser Technol 69:44–51CrossRef
26.
Zurück zum Zitat Mahmoudi M, Tapia G, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J Manuf Process 35:672–680CrossRef Mahmoudi M, Tapia G, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) On the printability and transformation behavior of nickel-titanium shape memory alloys fabricated using laser powder-bed fusion additive manufacturing. J Manuf Process 35:672–680CrossRef
27.
Zurück zum Zitat Bormann T, Muller B, Schinhammer M, Kessler A, Thalmann P, de Wild M (2014) Microstructure of selective laser melted nickel-titanium. Mater Charact 94:189–202CrossRef Bormann T, Muller B, Schinhammer M, Kessler A, Thalmann P, de Wild M (2014) Microstructure of selective laser melted nickel-titanium. Mater Charact 94:189–202CrossRef
28.
Zurück zum Zitat Andani MT, Saedi S, Turabi AS, Karamooz MR, Haberland C, Karaca HE, Elahinia M (2017) Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater 68:224–231CrossRef Andani MT, Saedi S, Turabi AS, Karamooz MR, Haberland C, Karaca HE, Elahinia M (2017) Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater 68:224–231CrossRef
29.
Zurück zum Zitat Moghaddam NS, Saghaian SE, Amerinatanzi A, Ibrahim H, Li P, Toker GP, Elahinia M (2018) Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A 724:220–230CrossRef Moghaddam NS, Saghaian SE, Amerinatanzi A, Ibrahim H, Li P, Toker GP, Elahinia M (2018) Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A 724:220–230CrossRef
30.
Zurück zum Zitat Dadbakhsh S, Vrancken B, Kruth JP, Luyten J, Van Humbeeck J (2016) Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A 650:225–232CrossRef Dadbakhsh S, Vrancken B, Kruth JP, Luyten J, Van Humbeeck J (2016) Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A 650:225–232CrossRef
31.
Zurück zum Zitat Biffi CA, Fiocchi J, Bassani P, Tuissi A, Microstructure and martensitic transformation of selective laser melted NiTi shape memory alloy parts, proceedings of the second international conference on simulation for additive manufacturing (Sim-AM 2019, Pavia, Italy, 11–13 September 2019. ISBN: 978-84-949194-8-0. Biffi CA, Fiocchi J, Bassani P, Tuissi A, Microstructure and martensitic transformation of selective laser melted NiTi shape memory alloy parts, proceedings of the second international conference on simulation for additive manufacturing (Sim-AM 2019, Pavia, Italy, 11–13 September 2019. ISBN: 978-84-949194-8-0.
32.
Zurück zum Zitat Assuncao E, Williams V (2013) Comparison of continuos wave and pulsed wave laser welding effects. Opt Lasers Eng 51:674–680CrossRef Assuncao E, Williams V (2013) Comparison of continuos wave and pulsed wave laser welding effects. Opt Lasers Eng 51:674–680CrossRef
34.
Zurück zum Zitat Biffi CA, Fiocchi J, Bassani P, Tuissi A (2018) Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: microstructure and mechanical behaviour. Add Manuf 24:639–646 Biffi CA, Fiocchi J, Bassani P, Tuissi A (2018) Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: microstructure and mechanical behaviour. Add Manuf 24:639–646
35.
Zurück zum Zitat Fiocchi J, Biffi CA, Tuissi A (2019) Selective laser melting of high-strength primary AlSi9Cu3 alloy: processability, microstructure, and mechanical properties. Mater Des 191:108581CrossRef Fiocchi J, Biffi CA, Tuissi A (2019) Selective laser melting of high-strength primary AlSi9Cu3 alloy: processability, microstructure, and mechanical properties. Mater Des 191:108581CrossRef
36.
Zurück zum Zitat Leach R (2013) Characterisation of areal surface texture. Springer-Verlag, Berlin HeidelbergCrossRef Leach R (2013) Characterisation of areal surface texture. Springer-Verlag, Berlin HeidelbergCrossRef
37.
Zurück zum Zitat Khalil Allafi J, Ren X, Eggeler G (2002) The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Mater 50(4):793–803CrossRef Khalil Allafi J, Ren X, Eggeler G (2002) The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Mater 50(4):793–803CrossRef
38.
Zurück zum Zitat Dadbakhsh S, Speirs M, Kruth J-P, Schrooten J, Luyten J, Van Humbeeck J (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16:1140–1146CrossRef Dadbakhsh S, Speirs M, Kruth J-P, Schrooten J, Luyten J, Van Humbeeck J (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16:1140–1146CrossRef
39.
Zurück zum Zitat Biffi CA, Bassani P, Nematollahi M, Moghaddam NS, Amerinatanzi A, Mahtabi MJ, Elahinia M, Tuissi A (2019) Effect of ultrasonic nanocrystal surface modification on the microstructure and martensitic transformation of selective laser melted nitinol. Materials 12(19):3068CrossRef Biffi CA, Bassani P, Nematollahi M, Moghaddam NS, Amerinatanzi A, Mahtabi MJ, Elahinia M, Tuissi A (2019) Effect of ultrasonic nanocrystal surface modification on the microstructure and martensitic transformation of selective laser melted nitinol. Materials 12(19):3068CrossRef
41.
Zurück zum Zitat Gall K, Sehitoglu H (1999) Therole of texture in tension-compression asymmetry in policrystalline NiTi. Int J Plast 15:69–92CrossRef Gall K, Sehitoglu H (1999) Therole of texture in tension-compression asymmetry in policrystalline NiTi. Int J Plast 15:69–92CrossRef
Metadaten
Titel
Selective Laser Melting of NiTi Shape Memory Alloy: Processability, Microstructure, and Superelasticity
verfasst von
Carlo Alberto Biffi
Jacopo Fiocchi
Fabrizio Valenza
Paola Bassani
Ausonio Tuissi
Publikationsdatum
03.08.2020
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 3/2020
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-020-00298-8

Weitere Artikel der Ausgabe 3/2020

Shape Memory and Superelasticity 3/2020 Zur Ausgabe

Special Issue: A Tribute To Prof. Dr. Gunther Eggeler, Invited Paper

Fatigue Crack Initiation in the Iron-Based Shape Memory Alloy FeMnAlNiTi

Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper

Recent Developments in Small-Scale Shape Memory Oxides

Special Issue: A Tribute to Prof. Dr. Gunther Eggeler, Invited Paper

Development of Nickel-Rich Nickel–Titanium–Hafnium Alloys for Tribological Applications

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.