Skip to main content

2021 | OriginalPaper | Buchkapitel

Selective Pseudo-Label Clustering

verfasst von : Louis Mahon, Thomas Lukasiewicz

Erschienen in: KI 2021: Advances in Artificial Intelligence

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deep neural networks (DNNs) offer a means of addressing the challenging task of clustering high-dimensional data. DNNs can extract useful features, and so produce a lower dimensional representation, which is more amenable to clustering techniques. As clustering is typically performed in a purely unsupervised setting, where no training labels are available, the question then arises as to how the DNN feature extractor can be trained. The most accurate existing approaches combine the training of the DNN with the clustering objective, so that information from the clustering process can be used to update the DNN to produce better features for clustering. One problem with this approach is that these “pseudo-labels” produced by the clustering algorithm are noisy, and any errors that they contain will hurt the training of the DNN. In this paper, we propose selective pseudo-label clustering, which uses only the most confident pseudo-labels for training the DNN. We formally prove the performance gains under certain conditions. Applied to the task of image clustering, the new approach achieves a state-of-the-art performance on three popular image datasets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abavisani, M., Patel, V.M.: Deep multimodal subspace clustering networks. IEEE J. Sel. Top. Signal Process. 12(6), 1601–1614 (2018)CrossRef Abavisani, M., Patel, V.M.: Deep multimodal subspace clustering networks. IEEE J. Sel. Top. Signal Process. 12(6), 1601–1614 (2018)CrossRef
2.
3.
Zurück zum Zitat Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent extensions and applications. Comput. Sci. Rev. 28, 1–25 (2018)MathSciNetCrossRef Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent extensions and applications. Comput. Sci. Rev. 28, 1–25 (2018)MathSciNetCrossRef
4.
Zurück zum Zitat Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)MATH Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)MATH
5.
Zurück zum Zitat Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv:1809.11096 (2018) Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv:​1809.​11096 (2018)
6.
Zurück zum Zitat Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of ECCV, pp. 132–149 (2018) Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of ECCV, pp. 132–149 (2018)
7.
Zurück zum Zitat Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of ICCV, pp. 5879–5887 (2017) Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of ICCV, pp. 5879–5887 (2017)
8.
Zurück zum Zitat Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4), 559–583 (1989)CrossRef Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4), 559–583 (1989)CrossRef
9.
Zurück zum Zitat Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial network. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 1967–1974 (2018)CrossRef Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial network. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 1967–1974 (2018)CrossRef
10.
Zurück zum Zitat Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)MathSciNetMATH Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)MathSciNetMATH
12.
Zurück zum Zitat Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: Creative adversarial networks, generating art by learning about styles and deviating from style norms. arXiv:1706.07068 (2017) Elgammal, A., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: Creative adversarial networks, generating art by learning about styles and deviating from style norms. arXiv:​1706.​07068 (2017)
13.
Zurück zum Zitat Gao, B., Yang, Y., Gouk, H., Hospedales, T.M.: Deep clustering with concrete k-means. In: Proceedings of ICASSP, pp. 4252–4256. IEEE (2020) Gao, B., Yang, Y., Gouk, H., Hospedales, T.M.: Deep clustering with concrete k-means. In: Proceedings of ICASSP, pp. 4252–4256. IEEE (2020)
14.
Zurück zum Zitat Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of ICCV (2017) Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of ICCV (2017)
15.
Zurück zum Zitat Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of NIPS, pp. 2672–2680 (2014) Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of NIPS, pp. 2672–2680 (2014)
16.
Zurück zum Zitat Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: Proceedings of IJCAI, pp. 1753–1759 (2017) Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: Proceedings of IJCAI, pp. 1753–1759 (2017)
17.
Zurück zum Zitat Guo, X., Zhu, E., Liu, X., Yin, J.: Deep embedded clustering with data augmentation. In: Proceedings of Asian Conference on Machine Learning, pp. 550–565 (2018) Guo, X., Zhu, E., Liu, X., Yin, J.: Deep embedded clustering with data augmentation. In: Proceedings of Asian Conference on Machine Learning, pp. 550–565 (2018)
18.
Zurück zum Zitat Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 (2012) Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv:​1207.​0580 (2012)
19.
Zurück zum Zitat Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for clustering. In: Proceedings of ICPR, pp. 1532–1537. IEEE (2014) Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for clustering. In: Proceedings of ICPR, pp. 1532–1537. IEEE (2014)
20.
Zurück zum Zitat Hull, J.J.: A database for handwritten text recognition research. TPAMI 16(5), 550–554 (1994)CrossRef Hull, J.J.: A database for handwritten text recognition research. TPAMI 16(5), 550–554 (1994)CrossRef
21.
Zurück zum Zitat Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an unsupervised and generative approach to clustering. arXiv:1611.05148 (2016) Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding: an unsupervised and generative approach to clustering. arXiv:​1611.​05148 (2016)
22.
Zurück zum Zitat Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of CVPR (2019) Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of CVPR (2019)
23.
Zurück zum Zitat Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. TPAMI 20(3), 226–239 (1998)CrossRef Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. TPAMI 20(3), 226–239 (1998)CrossRef
24.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1097–1105 (2012)
25.
26.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
28.
29.
Zurück zum Zitat Lloyd, S.: Least square quantization in PCM. IEEE Trans. Inf. Theory (1957/1982) 18, 129–137 (1957) Lloyd, S.: Least square quantization in PCM. IEEE Trans. Inf. Theory (1957/1982) 18, 129–137 (1957)
30.
Zurück zum Zitat McConville, R., Santos-Rodriguez, R., Piechocki, R.J., Craddock, I.: N2D:(not too) deep clustering via clustering the local manifold of an autoencoded embedding. arXiv:1908.05968 (2019) McConville, R., Santos-Rodriguez, R., Piechocki, R.J., Craddock, I.: N2D:(not too) deep clustering via clustering the local manifold of an autoencoded embedding. arXiv:​1908.​05968 (2019)
31.
Zurück zum Zitat McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Sour. Softw. 2(11), 205 (2017)CrossRef McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering. J. Open Sour. Softw. 2(11), 205 (2017)CrossRef
32.
Zurück zum Zitat McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 (2018) McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:​1802.​03426 (2018)
33.
Zurück zum Zitat Mrabah, N., Bouguessa, M., Ksantini, R.: Adversarial deep embedded clustering: on a better trade-off between feature randomness and feature drift. arXiv:1909.11832 (2019) Mrabah, N., Bouguessa, M., Ksantini, R.: Adversarial deep embedded clustering: on a better trade-off between feature randomness and feature drift. arXiv:​1909.​11832 (2019)
34.
Zurück zum Zitat Mrabah, N., Khan, N.M., Ksantini, R., Lachiri, Z.: Deep clustering with a dynamic autoencoder: From reconstruction towards centroids construction. arXiv:1901.07752 (2019) Mrabah, N., Khan, N.M., Ksantini, R., Lachiri, Z.: Deep clustering with a dynamic autoencoder: From reconstruction towards centroids construction. arXiv:​1901.​07752 (2019)
35.
Zurück zum Zitat Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: ClusterGAN: latent space clustering in generative adversarial networks. arXiv:1809.03627 (2019) Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: ClusterGAN: latent space clustering in generative adversarial networks. arXiv:​1809.​03627 (2019)
36.
Zurück zum Zitat Opitz, D.W., Maclin, R.F.: An empirical evaluation of bagging and boosting for artificial neural networks. In: Proceedings of ICNN, vol. 3, pp. 1401–1405. IEEE (1997) Opitz, D.W., Maclin, R.F.: An empirical evaluation of bagging and boosting for artificial neural networks. In: Proceedings of ICNN, vol. 3, pp. 1401–1405. IEEE (1997)
37.
Zurück zum Zitat Pearlmutter, B.A., Rosenfeld, R.: Chaitin-Kolmogorov complexity and generalization in neural networks. In: Proceedings of NIPS, pp. 925–931 (1991) Pearlmutter, B.A., Rosenfeld, R.: Chaitin-Kolmogorov complexity and generalization in neural networks. In: Proceedings of NIPS, pp. 925–931 (1991)
38.
Zurück zum Zitat Perrone, M.P.: Improving regression estimation: averaging methods for variance reduction with extensions to general convex measure optimization. Ph.D. thesis (1993) Perrone, M.P.: Improving regression estimation: averaging methods for variance reduction with extensions to general convex measure optimization. Ph.D. thesis (1993)
39.
Zurück zum Zitat Ren, Y., Wang, N., Li, M., Xu, Z.: Deep density-based image clustering. Knowl.-Based Syst. 197, 105841 (2020) Ren, Y., Wang, N., Li, M., Xu, Z.: Deep density-based image clustering. Knowl.-Based Syst. 197, 105841 (2020)
40.
Zurück zum Zitat Wang, Y., Zhang, L., Nie, F., Li, X., Chen, Z., Wang, F.: WeGAN: deep image hashing with weighted generative adversarial networks. IEEE Trans. Multimed. 22, 1458–1469 (2019)CrossRef Wang, Y., Zhang, L., Nie, F., Li, X., Chen, Z., Wang, F.: WeGAN: deep image hashing with weighted generative adversarial networks. IEEE Trans. Multimed. 22, 1458–1469 (2019)CrossRef
41.
Zurück zum Zitat Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Rec. 31(1), 76–77 (2002)CrossRef Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java implementations. ACM SIGMOD Rec. 31(1), 76–77 (2002)CrossRef
42.
Zurück zum Zitat Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 (2017) Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:​1708.​07747 (2017)
43.
Zurück zum Zitat Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of ICML, pp. 478–487 (2016) Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of ICML, pp. 478–487 (2016)
44.
Zurück zum Zitat Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: Proceedings of ICML, vol. 70, pp. 3861–3870. JMLR.org (2017) Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: Proceedings of ICML, vol. 70, pp. 3861–3870. JMLR.org (2017)
45.
Zurück zum Zitat Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of CVPR, pp. 5147–5156 (2016) Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of CVPR, pp. 5147–5156 (2016)
47.
Zurück zum Zitat Zemel, R.S., Hinton, G.E.: Developing population codes by minimizing description length. In: Proceedings of NIPS, pp. 11–18 (1994) Zemel, R.S., Hinton, G.E.: Developing population codes by minimizing description length. In: Proceedings of NIPS, pp. 11–18 (1994)
48.
50.
Zurück zum Zitat Zhou, P., Hou, Y., Feng, J.: Deep adversarial subspace clustering. In: Proceedings of CVPR (2018) Zhou, P., Hou, Y., Feng, J.: Deep adversarial subspace clustering. In: Proceedings of CVPR (2018)
51.
Zurück zum Zitat Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)MathSciNetCrossRef Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min.: ASA Data Sci. J. 5(5), 363–387 (2012)MathSciNetCrossRef
Metadaten
Titel
Selective Pseudo-Label Clustering
verfasst von
Louis Mahon
Thomas Lukasiewicz
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_12