Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Selenide Glass Fibers for Biochemical Infrared Sensing

verfasst von : Pierre Lucas, Ph.D., Bruno Bureau, Ph.D.

Erschienen in: Applications of Chalcogenides: S, Se, and Te

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter discusses the use of selenide glass fibers for biochemical sensing. Selenide glasses combine two unique properties: (1) high transparency in the mid-infrared, (2) excellent rheological properties for molding and drawing, which make them the most suitable candidate materials for infrared fiber technology. In particular, chalcogenide glasses exhibit high transparency over the spectral domain corresponding to molecular vibrations and are therefore of great interest for optical sensing applications. Here we review the basic principles of fiber-based spectroscopy and the properties of chalcogenide glasses such as selenides. We then review the state of the art in applications of fiber evanescent wave spectroscopy to chemical and biomedical sensing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.A.C. Compton, S.L. Hill, N.A. Wright, M.A. Druy, J. Piche, W.A. Stevenson, D.W. Vidrine, In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber. Appl. Spectrosc. 42, 972 (1988)CrossRef D.A.C. Compton, S.L. Hill, N.A. Wright, M.A. Druy, J. Piche, W.A. Stevenson, D.W. Vidrine, In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber. Appl. Spectrosc. 42, 972 (1988)CrossRef
2.
Zurück zum Zitat P. Lucas, D. LeCoq, C. Juncker, J. Collier, D.E. Boesewetter, C. Boussard-Pledel, B. Bureau, M.R. Riley, Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy. Appl. Spectrosc. 59, 1–9 (2005)CrossRef P. Lucas, D. LeCoq, C. Juncker, J. Collier, D.E. Boesewetter, C. Boussard-Pledel, B. Bureau, M.R. Riley, Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy. Appl. Spectrosc. 59, 1–9 (2005)CrossRef
3.
Zurück zum Zitat D. Naumann, Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81 (1991)CrossRef D. Naumann, Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81 (1991)CrossRef
4.
Zurück zum Zitat M. Diem, S. Boydston-White, L. Chiriboga, Infrared spectroscopy of cells and tissues: shinning light onto a novel subject. Appl. Spectrosc. 53, 148A (1999)CrossRef M. Diem, S. Boydston-White, L. Chiriboga, Infrared spectroscopy of cells and tissues: shinning light onto a novel subject. Appl. Spectrosc. 53, 148A (1999)CrossRef
5.
Zurück zum Zitat D. Naumann, Infrared spectroscopy in microbiology, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (John Wiley & Sons Ltd, Chichester, 2000), p. 102 D. Naumann, Infrared spectroscopy in microbiology, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (John Wiley & Sons Ltd, Chichester, 2000), p. 102
6.
Zurück zum Zitat M. Diem, K. Papamarkakis, J. Schubert, B. Bird, M.J. Romeo, M. Miljkovic, The infrared spectral signatures of disease: extracting the distinguishing spectral features between normal and diseased states. Appl. Spectrosc. 63, 307A–318A (2009)CrossRef M. Diem, K. Papamarkakis, J. Schubert, B. Bird, M.J. Romeo, M. Miljkovic, The infrared spectral signatures of disease: extracting the distinguishing spectral features between normal and diseased states. Appl. Spectrosc. 63, 307A–318A (2009)CrossRef
7.
Zurück zum Zitat M. Diem, N. Laver, K. Bedrossian, J. Schubert, K. Papamarkakis, B. Bird, M. Miljkovic, Detection of viral infection in epithelial cells by infrared spectral cytopathology, in Handbook of Biophotonics, ed. by J. Popp (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011), pp. 251–258 M. Diem, N. Laver, K. Bedrossian, J. Schubert, K. Papamarkakis, B. Bird, M. Miljkovic, Detection of viral infection in epithelial cells by infrared spectral cytopathology, in Handbook of Biophotonics, ed. by J. Popp (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011), pp. 251–258
8.
Zurück zum Zitat M. Karlowatz, M. Kraft, B. Mizaikoff, Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field. Anal. Chem. 76, 2643 (2004)CrossRef M. Karlowatz, M. Kraft, B. Mizaikoff, Simultaneous quantitative determination of benzene, toluene, and xylenes in water using mid-infrared evanescent field. Anal. Chem. 76, 2643 (2004)CrossRef
9.
Zurück zum Zitat R. Krska, E. Rosenber, K. Taga, R. Kellner, A. Messica, A. Katzir, Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water. Appl. Phys. Lett. 61, 1778 (1992)CrossRef R. Krska, E. Rosenber, K. Taga, R. Kellner, A. Messica, A. Katzir, Polymer coated silver halide infrared fibers as sensing devices for chlorinated hydrocarbons in water. Appl. Phys. Lett. 61, 1778 (1992)CrossRef
10.
Zurück zum Zitat M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers 61, 349–353 (2002)CrossRef M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers 61, 349–353 (2002)CrossRef
11.
Zurück zum Zitat A. Pacifico, L.A. Chiriboga, P. Lasch, M. Diem, Infrared spectroscopy of cultured cells II. Spectra of exponentially growing, serum-deprived and confluent cells. Vib. Spectrosc. 32, 107 (2003)CrossRef A. Pacifico, L.A. Chiriboga, P. Lasch, M. Diem, Infrared spectroscopy of cultured cells II. Spectra of exponentially growing, serum-deprived and confluent cells. Vib. Spectrosc. 32, 107 (2003)CrossRef
12.
Zurück zum Zitat B. Rigas, S. Morgello, I.S. Goldman, P.T.T. Wong, Human colorectal cancers display abnormal FTIR spectra. Proc. Natl. Acad. Sci. U. S. A. 87, 8140 (1990)CrossRef B. Rigas, S. Morgello, I.S. Goldman, P.T.T. Wong, Human colorectal cancers display abnormal FTIR spectra. Proc. Natl. Acad. Sci. U. S. A. 87, 8140 (1990)CrossRef
13.
Zurück zum Zitat H. Fabian, P. Lasch, D. Naumann, Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy. J. Biomed. Opt. 10, 031103 (2005)CrossRef H. Fabian, P. Lasch, D. Naumann, Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy. J. Biomed. Opt. 10, 031103 (2005)CrossRef
14.
Zurück zum Zitat R. Nomen, J. Sempere, K. Aviles, Detection and characterization of water alcohol hydrates by on-line FTIR using multivariate data analysis. Chem. Eng. Sci. 56, 6577 (2001)CrossRef R. Nomen, J. Sempere, K. Aviles, Detection and characterization of water alcohol hydrates by on-line FTIR using multivariate data analysis. Chem. Eng. Sci. 56, 6577 (2001)CrossRef
15.
Zurück zum Zitat T. Hasegawa, J. Nishijo, T. Imae, Q. Huo, R.M. Leblanc, Selective observation of boundary water near a solid/water interface by variable-angle polarization specific attenuated total reflection infrared spectroscopy and principal component analysis. J. Phys. Chem. B 105, 12056 (2001)CrossRef T. Hasegawa, J. Nishijo, T. Imae, Q. Huo, R.M. Leblanc, Selective observation of boundary water near a solid/water interface by variable-angle polarization specific attenuated total reflection infrared spectroscopy and principal component analysis. J. Phys. Chem. B 105, 12056 (2001)CrossRef
16.
Zurück zum Zitat F.A. Inon, J.M. Garrigues, S. Garrigues, A. Molina, M.D.L. Guardia, Selection of calibration set samples in determination of olive oil acidity by partial least squares-attenuated total reflectance-Fourier transform infrared spectroscopy. Anal. Chim. Acta 489, 59 (2003)CrossRef F.A. Inon, J.M. Garrigues, S. Garrigues, A. Molina, M.D.L. Guardia, Selection of calibration set samples in determination of olive oil acidity by partial least squares-attenuated total reflectance-Fourier transform infrared spectroscopy. Anal. Chim. Acta 489, 59 (2003)CrossRef
17.
Zurück zum Zitat J. Tewardi, J. Irudayaraj, Quantification of saccharides in multiple floral honeys using fourier transform infrared microattenuated total reflectance spectroscopy. J. Agric. Food Chem. 52, 3237 (2004)CrossRef J. Tewardi, J. Irudayaraj, Quantification of saccharides in multiple floral honeys using fourier transform infrared microattenuated total reflectance spectroscopy. J. Agric. Food Chem. 52, 3237 (2004)CrossRef
18.
Zurück zum Zitat T. Udelhoven, D. Naumann, J. Schmitt, Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl. Spectrosc. 54, 1471 (2000)CrossRef T. Udelhoven, D. Naumann, J. Schmitt, Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl. Spectrosc. 54, 1471 (2000)CrossRef
19.
Zurück zum Zitat O. Eytan, B.-A. Sela, A. Katzir, Fiber-optic evanescent-wave spectroscopy and neural networks: application to chemical blood analysis. Appl. Opt. 39, 3357–3360 (2000)CrossRef O. Eytan, B.-A. Sela, A. Katzir, Fiber-optic evanescent-wave spectroscopy and neural networks: application to chemical blood analysis. Appl. Opt. 39, 3357–3360 (2000)CrossRef
20.
Zurück zum Zitat N.J. Harrick, Internal Reflection Spectroscopy (Interscience Publishers, New York, 1967) N.J. Harrick, Internal Reflection Spectroscopy (Interscience Publishers, New York, 1967)
21.
Zurück zum Zitat P. Lucas, M.R. Riley, C. Boussard-Pledel, B. Bureau, Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal. Biochem. 351, 1–10 (2006)CrossRef P. Lucas, M.R. Riley, C. Boussard-Pledel, B. Bureau, Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal. Biochem. 351, 1–10 (2006)CrossRef
22.
Zurück zum Zitat P. Lucas, B. Bureau, Advanced infrared glasses for biochemical sensing, in Biointerface Characterization by Advanced IR Spectroscopy, ed. by C.M. Pradier, Y.J. Chabal (Elsevier, Amsterdam, 2011), pp. 217–243CrossRef P. Lucas, B. Bureau, Advanced infrared glasses for biochemical sensing, in Biointerface Characterization by Advanced IR Spectroscopy, ed. by C.M. Pradier, Y.J. Chabal (Elsevier, Amsterdam, 2011), pp. 217–243CrossRef
23.
Zurück zum Zitat D. Le Coq, K. Michel, J. Keirsse, C. Boussard-Pledel, G. Fonteneau, B. Bureau, J.-M. Le Quere, O. Sire, J. Lucas, Infrared glass fibers for in-situ sensing, chemical and biochemical reactions. C. R. Chim. 5, 907–913 (2002)CrossRef D. Le Coq, K. Michel, J. Keirsse, C. Boussard-Pledel, G. Fonteneau, B. Bureau, J.-M. Le Quere, O. Sire, J. Lucas, Infrared glass fibers for in-situ sensing, chemical and biochemical reactions. C. R. Chim. 5, 907–913 (2002)CrossRef
24.
Zurück zum Zitat C. Boussard-Pledel, S. Hocde, G. Fonteneau, H.L. Ma, X.H. Zhang, K. Lefoulgoc, J. Lucas, Infrared glass fibers for evanescent wave spectroscopy. Proc. SPIE 3596, 91 (1999)CrossRef C. Boussard-Pledel, S. Hocde, G. Fonteneau, H.L. Ma, X.H. Zhang, K. Lefoulgoc, J. Lucas, Infrared glass fibers for evanescent wave spectroscopy. Proc. SPIE 3596, 91 (1999)CrossRef
25.
Zurück zum Zitat M.A. Druy, P.J. Glatkowski, W.A. Stevenson, Mid-IR tapered chalcogenide fiber optic attenuated total attenuated reflectance (ATR) sensors for monitoring epoxy resin chemistry. Proc. SPIE 2069, 113 (1993)CrossRef M.A. Druy, P.J. Glatkowski, W.A. Stevenson, Mid-IR tapered chalcogenide fiber optic attenuated total attenuated reflectance (ATR) sensors for monitoring epoxy resin chemistry. Proc. SPIE 2069, 113 (1993)CrossRef
26.
Zurück zum Zitat K. Michel, B. Bureau, C. Pouvreau, J.C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, W. Konz, Development of a chalcogenide glass fiber device for in situ pollutant detection. J. Non-Cryst. Solids 326, 434 (2003)CrossRef K. Michel, B. Bureau, C. Pouvreau, J.C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, W. Konz, Development of a chalcogenide glass fiber device for in situ pollutant detection. J. Non-Cryst. Solids 326, 434 (2003)CrossRef
27.
Zurück zum Zitat H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J.M. Bayona, B. Mizaikoff, In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system. Appl. Spectrosc. 57, 607–613 (2003)CrossRef H. Steiner, M. Jakusch, M. Kraft, M. Karlowatz, T. Baumann, R. Niessner, W. Konz, A. Brandenburg, K. Michel, C. Boussard-Pledel, B. Bureau, J. Lucas, Y. Reichlin, A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi, J.M. Bayona, B. Mizaikoff, In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system. Appl. Spectrosc. 57, 607–613 (2003)CrossRef
28.
Zurück zum Zitat N. Afasnasyeva, R. Bruch, A. Katzir, Infrared fiberoptic evanescent wave spectroscopy: application in biology and medicine. Proc. SPIE 3596, 152 (1999)CrossRef N. Afasnasyeva, R. Bruch, A. Katzir, Infrared fiberoptic evanescent wave spectroscopy: application in biology and medicine. Proc. SPIE 3596, 152 (1999)CrossRef
29.
Zurück zum Zitat S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, J. Lucas, Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis. J. Biomed. Opt. 9, 404–407 (2004)CrossRef S. Hocde, O. Loreal, O. Sire, C. Boussard-Pledel, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, J. Lucas, Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis. J. Biomed. Opt. 9, 404–407 (2004)CrossRef
30.
Zurück zum Zitat J. Keirsse, E. Lahaye, A. Bouter, V. Dupont, C. Boussard-Pledel, B. Bureau, J.-L. Adam, V. Monbet, O. Sire, Mapping bacterial surface population physiology in real-time: infrared spectroscopy of Proteus mirabilis swarm colonies. Appl. Spectrosc. 60, 584–591 (2006)CrossRef J. Keirsse, E. Lahaye, A. Bouter, V. Dupont, C. Boussard-Pledel, B. Bureau, J.-L. Adam, V. Monbet, O. Sire, Mapping bacterial surface population physiology in real-time: infrared spectroscopy of Proteus mirabilis swarm colonies. Appl. Spectrosc. 60, 584–591 (2006)CrossRef
31.
Zurück zum Zitat M.L. Anne, C. Le Lan, V. Monbet, C. Boussard-Pledel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, J.L. Adam, P. Brissot, B. Bureau, O. Loreal, Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans. J. Biomed. Opt. 14, 054033 (2009)CrossRef M.L. Anne, C. Le Lan, V. Monbet, C. Boussard-Pledel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, J.L. Adam, P. Brissot, B. Bureau, O. Loreal, Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans. J. Biomed. Opt. 14, 054033 (2009)CrossRef
32.
Zurück zum Zitat S. Hocde, C. Boussard-Pledel, G. Fonteneau, J. Lucas, Chalcogens based glasses for IR fiber chemical sensors. Solid State Sci. 3, 279–284 (2001)CrossRef S. Hocde, C. Boussard-Pledel, G. Fonteneau, J. Lucas, Chalcogens based glasses for IR fiber chemical sensors. Solid State Sci. 3, 279–284 (2001)CrossRef
33.
Zurück zum Zitat P. Lucas, A.A. Wilhelm, M. Videa, C. Boussard-Pledel, B. Bureau, Chemical stability of chalcogenide infrared glass fibers. Corros. Sci. 50, 2047–2052 (2008)CrossRef P. Lucas, A.A. Wilhelm, M. Videa, C. Boussard-Pledel, B. Bureau, Chemical stability of chalcogenide infrared glass fibers. Corros. Sci. 50, 2047–2052 (2008)CrossRef
34.
Zurück zum Zitat V.S. Shiryaev, J.L. Adam, X.H. Zhang, C. Boussard-Pledel, J. Lucas, M.F. Churbanov, Infrared fibers based on Te-As-Se glass system with low optical losses. J. Non-Cryst. Solids 336, 113–119 (2004)CrossRef V.S. Shiryaev, J.L. Adam, X.H. Zhang, C. Boussard-Pledel, J. Lucas, M.F. Churbanov, Infrared fibers based on Te-As-Se glass system with low optical losses. J. Non-Cryst. Solids 336, 113–119 (2004)CrossRef
35.
Zurück zum Zitat E. Hecht, Optics, 2nd edn. (Addison-Wesley, Reading, MA, 1987) E. Hecht, Optics, 2nd edn. (Addison-Wesley, Reading, MA, 1987)
36.
Zurück zum Zitat E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X.-H. Zhang, B. Bureau, C. Boussard-Pledel, J.-C. Sangleboeuf, P. Lucas, Optical microfabrication of tapers in low-loss chalcogenide fibers. J. Opt. Soc. Am. B 27, 966–971 (2010)CrossRef E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X.-H. Zhang, B. Bureau, C. Boussard-Pledel, J.-C. Sangleboeuf, P. Lucas, Optical microfabrication of tapers in low-loss chalcogenide fibers. J. Opt. Soc. Am. B 27, 966–971 (2010)CrossRef
37.
Zurück zum Zitat D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, J. Lucas, Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy. Int. J. Inorg. Mater. 3, 233–239 (2001)CrossRef D. Lecoq, K. Michel, G. Fonteneau, S. Hocde, C. Boussard-Pledel, J. Lucas, Infrared chalcogen glasses: chemical polishing and fiber remote spectroscopy. Int. J. Inorg. Mater. 3, 233–239 (2001)CrossRef
38.
Zurück zum Zitat S. Cui, R. Chahal, C. Boussard-Pledel, V. Nazabal, J.-L. Doualan, J. Troles, J. Lucas, B. Bureau, From selenium- to tellurium-based glass optical fibers for infrared spectroscopies. Molecules 18, 5373–5388 (2013)CrossRef S. Cui, R. Chahal, C. Boussard-Pledel, V. Nazabal, J.-L. Doualan, J. Troles, J. Lucas, B. Bureau, From selenium- to tellurium-based glass optical fibers for infrared spectroscopies. Molecules 18, 5373–5388 (2013)CrossRef
39.
Zurück zum Zitat Z. Yang, M.K. Fah, K.A. Reynolds, J.D. Sexton, M.R. Riley, M.-L. Anne, B. Bureau, P. Lucas, Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors. Opt. Express 18, 26754–26759 (2010)CrossRef Z. Yang, M.K. Fah, K.A. Reynolds, J.D. Sexton, M.R. Riley, M.-L. Anne, B. Bureau, P. Lucas, Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors. Opt. Express 18, 26754–26759 (2010)CrossRef
40.
Zurück zum Zitat M.L. Brandily, V. Monbet, B. Bureau, C. Boussard-Pledel, O. Loreal, J.L. Adam, O. Sire, Identification of foodborne pathogens within food matrices by IR spectroscopy. Sens. Actuators B 160, 202–206 (2011)CrossRef M.L. Brandily, V. Monbet, B. Bureau, C. Boussard-Pledel, O. Loreal, J.L. Adam, O. Sire, Identification of foodborne pathogens within food matrices by IR spectroscopy. Sens. Actuators B 160, 202–206 (2011)CrossRef
41.
Zurück zum Zitat B. Bureau, C. Boussard, S. Cui, R. Chahal, M.L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, J. Lucas, Chalcogenide optical fibers for mid-infrared sensing. Opt. Eng. 53(2014), 027101 (2014)CrossRef B. Bureau, C. Boussard, S. Cui, R. Chahal, M.L. Anne, V. Nazabal, O. Sire, O. Loreal, P. Lucas, V. Monbet, J.-L. Doualan, P. Camy, H. Tariel, F. Charpentier, L. Quetel, J.-L. Adam, J. Lucas, Chalcogenide optical fibers for mid-infrared sensing. Opt. Eng. 53(2014), 027101 (2014)CrossRef
42.
Zurück zum Zitat P. Lucas, G.J. Coleman, S. Jiang, T. Luo, Z. Yang, Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing. Opt. Mater. 47, 530–536 (2015)CrossRef P. Lucas, G.J. Coleman, S. Jiang, T. Luo, Z. Yang, Chalcogenide glass fibers: optical window tailoring and suitability for bio-chemical sensing. Opt. Mater. 47, 530–536 (2015)CrossRef
43.
Zurück zum Zitat Z. Yang, T. Luo, S. Jiang, J. Geng, P. Lucas, Single-mode low-loss optical fibers for long-wave infrared transmission. Opt. Lett. 35, 3360–3362 (2010)CrossRef Z. Yang, T. Luo, S. Jiang, J. Geng, P. Lucas, Single-mode low-loss optical fibers for long-wave infrared transmission. Opt. Lett. 35, 3360–3362 (2010)CrossRef
44.
Zurück zum Zitat J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, J.L. Adam, GeSe4 glass fibres with low optical losses in the mid-IR. Opt. Mater. 32, 212–215 (2009)CrossRef J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, J.L. Adam, GeSe4 glass fibres with low optical losses in the mid-IR. Opt. Mater. 32, 212–215 (2009)CrossRef
45.
Zurück zum Zitat G.E. Snopatin, M.F. Churbanov, A. Apushkin, V.V. Gerasimenko, E.M. Dianov, V.G. Plotnichenko, High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km. Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009) G.E. Snopatin, M.F. Churbanov, A. Apushkin, V.V. Gerasimenko, E.M. Dianov, V.G. Plotnichenko, High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km. Optoelectron. Adv. Mater. Rapid Commun. 3, 669–671 (2009)
46.
Zurück zum Zitat G.E. Snopatin, V.S. Shiryaev, V.G. Plotnichenko, E.M. Dianov, M.F. Churbanov, High-purity chalcogenide glasses for fiber optics. Inorg. Mater. 45, 1439–1460 (2009)CrossRef G.E. Snopatin, V.S. Shiryaev, V.G. Plotnichenko, E.M. Dianov, M.F. Churbanov, High-purity chalcogenide glasses for fiber optics. Inorg. Mater. 45, 1439–1460 (2009)CrossRef
47.
Zurück zum Zitat S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H.L. Ma, J. Lucas, Recent developments in chemical sensing using infrared glass fibers. J. Non-Cryst. Solids 274, 17 (2000)CrossRef S. Hocde, C. Boussard-Pledel, G. Fonteneau, D. Lecoq, H.L. Ma, J. Lucas, Recent developments in chemical sensing using infrared glass fibers. J. Non-Cryst. Solids 274, 17 (2000)CrossRef
48.
Zurück zum Zitat Y. Gueguen, J.C. Sangleboeuf, V. Keryvin, E. Lepine, Z. Yang, T. Rouxel, C. Point, B. Bureau, X.-H. Zhang, P. Lucas, Photoinduced fluidity in chalcogenide glasses at low and high intensities: a model accounting for photon efficiency. Phys. Rev. B: Condens. Matter 82, 134114 (2010)CrossRef Y. Gueguen, J.C. Sangleboeuf, V. Keryvin, E. Lepine, Z. Yang, T. Rouxel, C. Point, B. Bureau, X.-H. Zhang, P. Lucas, Photoinduced fluidity in chalcogenide glasses at low and high intensities: a model accounting for photon efficiency. Phys. Rev. B: Condens. Matter 82, 134114 (2010)CrossRef
49.
Zurück zum Zitat Z. Yang, A.A. Wilhelm, P. Lucas, High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection. J. Am. Ceram. Soc. 93, 1941–1944 (2010) Z. Yang, A.A. Wilhelm, P. Lucas, High-conductivity tellurium-based infrared transmitting glasses and their suitability for bio-optical detection. J. Am. Ceram. Soc. 93, 1941–1944 (2010)
50.
Zurück zum Zitat A.A. Wilhelm, P. Lucas, D.L. DeRosa, M.R. Riley, Biocompatibility of Te-As-Se glass fibers for cell-based bio-optic infrared sensors. J. Mater. Res. 22, 1098–1104 (2007)CrossRef A.A. Wilhelm, P. Lucas, D.L. DeRosa, M.R. Riley, Biocompatibility of Te-As-Se glass fibers for cell-based bio-optic infrared sensors. J. Mater. Res. 22, 1098–1104 (2007)CrossRef
51.
Zurück zum Zitat Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, F. Smektala, Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism. J. Am. Ceram. Soc. 92, 1779–1787 (2009)CrossRef Y.-F. Niu, J.-P. Guin, T. Rouxel, A. Abdelouas, J. Troles, F. Smektala, Aqueous corrosion of the GeSe4 chalcogenide glass: surface properties and corrosion mechanism. J. Am. Ceram. Soc. 92, 1779–1787 (2009)CrossRef
52.
Zurück zum Zitat P. Lucas, M.A. Solis, C.D. Le, C. Juncker, M.R. Riley, J. Collier, D.E. Boesewetter, C. Boussard-Pledel, B. Bureau, Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators B B119, 355–362 (2006)CrossRef P. Lucas, M.A. Solis, C.D. Le, C. Juncker, M.R. Riley, J. Collier, D.E. Boesewetter, C. Boussard-Pledel, B. Bureau, Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators B B119, 355–362 (2006)CrossRef
53.
Zurück zum Zitat J.P. Guin, T. Rouxel, J.C. Sangleboeuf, I. Melscoet, J. Lucas, Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses. J. Am. Ceram. Soc. 85, 1545 (2002)CrossRef J.P. Guin, T. Rouxel, J.C. Sangleboeuf, I. Melscoet, J. Lucas, Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses. J. Am. Ceram. Soc. 85, 1545 (2002)CrossRef
54.
Zurück zum Zitat T. Rouxel, Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007)CrossRef T. Rouxel, Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007)CrossRef
55.
Zurück zum Zitat E. Lebourhis, P. Gadaud, J.P. Guin, N. Tournerie, X.H. Zhang, J. Lucas, T. Rouxel, Temperature dependence of the mechanical behaviour of a GeAsSe glass. Scr. Mater. 45, 317 (2001)CrossRef E. Lebourhis, P. Gadaud, J.P. Guin, N. Tournerie, X.H. Zhang, J. Lucas, T. Rouxel, Temperature dependence of the mechanical behaviour of a GeAsSe glass. Scr. Mater. 45, 317 (2001)CrossRef
56.
Zurück zum Zitat G. Delaizir, J.-C. Sangleboeuf, E.A. King, Y. Gueguen, X.-H. Zhang, C. Boussard-Pledel, B. Bureau, P. Lucas, Influence of ageing conditions on the mechanical properties of Te-As-Se fibres. J. Phys. D Appl. Phys. 42, 095405 (2009)CrossRef G. Delaizir, J.-C. Sangleboeuf, E.A. King, Y. Gueguen, X.-H. Zhang, C. Boussard-Pledel, B. Bureau, P. Lucas, Influence of ageing conditions on the mechanical properties of Te-As-Se fibres. J. Phys. D Appl. Phys. 42, 095405 (2009)CrossRef
57.
Zurück zum Zitat G. Yang, H. Chen, C. Boussard-Pledel, J.-C. Sangleboeuf, B. Bureau, Effect of physical aging on fracture behavior of Te2As3Se5 glass fibers. Ceram. Int. 41, 4487–4491 (2015)CrossRef G. Yang, H. Chen, C. Boussard-Pledel, J.-C. Sangleboeuf, B. Bureau, Effect of physical aging on fracture behavior of Te2As3Se5 glass fibers. Ceram. Int. 41, 4487–4491 (2015)CrossRef
58.
Zurück zum Zitat G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R.E. Peale, Z. Yang, X. Wang, A.F. Abouraddy, Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission. Opt. Lett. 39, 4009–4012 (2014)CrossRef G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R.E. Peale, Z. Yang, X. Wang, A.F. Abouraddy, Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission. Opt. Lett. 39, 4009–4012 (2014)CrossRef
59.
Zurück zum Zitat G. Tao, S. Shabahang, E.-H. Banaei, J.J. Kaufman, A.F. Abouraddy, Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. Opt. Lett. 37, 2751–2753 (2012)CrossRef G. Tao, S. Shabahang, E.-H. Banaei, J.J. Kaufman, A.F. Abouraddy, Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. Opt. Lett. 37, 2751–2753 (2012)CrossRef
60.
Zurück zum Zitat P. Houizot, M.-L. Anne, C. Boussard-Pledel, O. Loreal, H. Tariel, J. Lucas, B. Bureau, Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing. Sensors 14, 17905–17914 (2014)CrossRef P. Houizot, M.-L. Anne, C. Boussard-Pledel, O. Loreal, H. Tariel, J. Lucas, B. Bureau, Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing. Sensors 14, 17905–17914 (2014)CrossRef
61.
Zurück zum Zitat J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M.L. Anne, C. Ribault, O. Sire, O. Loreal, J.L. Adam, Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine. Proc. SPIE-Int. Soc. Opt. Eng. 5459, 61–68 (2004) J. Keirsse, B. Bureau, C. Boussard-Pledel, P. Leroyer, M. Ropert, V. Dupont, M.L. Anne, C. Ribault, O. Sire, O. Loreal, J.L. Adam, Chalcogenide glass fibers for in-situ infrared spectroscopy in biology and medicine. Proc. SPIE-Int. Soc. Opt. Eng. 5459, 61–68 (2004)
62.
Zurück zum Zitat J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, J. Lucas, IR optical fiber sensor for biomedical applications. Vib. Spectrosc. 32, 23–32 (2003)CrossRef J. Keirsse, C. Boussard-Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, J. Lucas, IR optical fiber sensor for biomedical applications. Vib. Spectrosc. 32, 23–32 (2003)CrossRef
63.
Zurück zum Zitat M.R. Riley, P. Lucas, C.D. Le, C. Juncker, D.E. Boesewetter, J.L. Collier, D.M. DeRosa, M.E. Katterman, C. Boussard-Pledel, B. Bureau, Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards. Biotechnol. Bioeng. 95, 599–612 (2006)CrossRef M.R. Riley, P. Lucas, C.D. Le, C. Juncker, D.E. Boesewetter, J.L. Collier, D.M. DeRosa, M.E. Katterman, C. Boussard-Pledel, B. Bureau, Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards. Biotechnol. Bioeng. 95, 599–612 (2006)CrossRef
64.
Zurück zum Zitat P. Lucas, E.A. King, Y. Gueguen, J.-C. Sangleboeuf, V. Keryvin, R.G. Erdmann, G. Delaizir, C. Boussard-Pledel, B. Bureau, X.-H. Zhang, T. Rouxel, Correlation between thermal and mechanical relaxation in chalcogenide glass fibers. J. Am. Ceram. Soc. 92, 1986–1992 (2009)CrossRef P. Lucas, E.A. King, Y. Gueguen, J.-C. Sangleboeuf, V. Keryvin, R.G. Erdmann, G. Delaizir, C. Boussard-Pledel, B. Bureau, X.-H. Zhang, T. Rouxel, Correlation between thermal and mechanical relaxation in chalcogenide glass fibers. J. Am. Ceram. Soc. 92, 1986–1992 (2009)CrossRef
65.
Zurück zum Zitat M.L. Anne, E. Le Gal La Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Pledel, H.L. Ma, X.H. Zhang, J.L. Adam, Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy. Sens. Actuators B 137, 687–691 (2009)CrossRef M.L. Anne, E. Le Gal La Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Pledel, H.L. Ma, X.H. Zhang, J.L. Adam, Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy. Sens. Actuators B 137, 687–691 (2009)CrossRef
66.
Zurück zum Zitat K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J.L. Adama, K. Staubmann, T. Baumannc, Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sens. Actuators B 101, 252–259 (2004)CrossRef K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J.L. Adama, K. Staubmann, T. Baumannc, Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sens. Actuators B 101, 252–259 (2004)CrossRef
67.
Zurück zum Zitat J. Franks, K. Rogers, Y. Guimond, Optical and thermo mechanical properties of infrared glasses. Proc. SPIE 6940, 69400P/69401–69400P/69408 (2008) J. Franks, K. Rogers, Y. Guimond, Optical and thermo mechanical properties of infrared glasses. Proc. SPIE 6940, 69400P/69401–69400P/69408 (2008)
68.
Zurück zum Zitat Y. Guimond, Y. Bellec, K. Rogers, A new moldable infrared glass for thermal imaging and low cost sensing. Proc. SPIE-Int. Soc. Opt. Eng. 6542, 654225/654221–654225/654226 (2007) Y. Guimond, Y. Bellec, K. Rogers, A new moldable infrared glass for thermal imaging and low cost sensing. Proc. SPIE-Int. Soc. Opt. Eng. 6542, 654225/654221–654225/654226 (2007)
70.
Zurück zum Zitat B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002)CrossRef B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, Y. Fink, Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002)CrossRef
71.
Zurück zum Zitat M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Integrated fibres for self-monitored optical transport. Nat. Mater. 4, 820–825 (2005)CrossRef M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink, Integrated fibres for self-monitored optical transport. Nat. Mater. 4, 820–825 (2005)CrossRef
72.
Zurück zum Zitat A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, Y. Fink, Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007)CrossRef A.F. Abouraddy, M. Bayindir, G. Benoit, S.D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, Y. Fink, Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336–347 (2007)CrossRef
74.
Zurück zum Zitat A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J.D. Joannopoulos, Y. Fink, All-in-fiber chemical sensing. Adv. Mater. 24, 6005–6009 (2012)CrossRef A. Gumennik, A.M. Stolyarov, B.R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J.D. Joannopoulos, Y. Fink, All-in-fiber chemical sensing. Adv. Mater. 24, 6005–6009 (2012)CrossRef
75.
Zurück zum Zitat A. Canales, X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva, Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015)CrossRef A. Canales, X. Jia, U.P. Froriep, R.A. Koppes, C.M. Tringides, J. Selvidge, C. Lu, C. Hou, L. Wei, Y. Fink, P. Anikeeva, Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015)CrossRef
76.
Zurück zum Zitat B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011) B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)
77.
Zurück zum Zitat C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T.F. Krauss, B.J. Eggleton, D. Bulla, S. Madden, B. Luther-Davies, Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides. Opt. Lett. 36, 2818–2820 (2011)CrossRef C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T.F. Krauss, B.J. Eggleton, D. Bulla, S. Madden, B. Luther-Davies, Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides. Opt. Lett. 36, 2818–2820 (2011)CrossRef
78.
Zurück zum Zitat M.W. Lee, C. Grillet, C.L.C. Smith, D.J. Moss, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, Y.-h. Lee, Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt. Express 15, 1277–1285 (2007)CrossRef M.W. Lee, C. Grillet, C.L.C. Smith, D.J. Moss, B.J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, Y.-h. Lee, Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt. Express 15, 1277–1285 (2007)CrossRef
79.
Zurück zum Zitat M.W. Lee, C. Grillet, C. Monat, E. Magi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, B.J. Eggleton, Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities. Opt. Express 18, 26695–26703 (2010)CrossRef M.W. Lee, C. Grillet, C. Monat, E. Magi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, B.J. Eggleton, Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities. Opt. Express 18, 26695–26703 (2010)CrossRef
80.
Zurück zum Zitat J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, Demonstration of chalcogenide glass racetrack microresonators. Opt. Lett. 33, 761–763 (2008)CrossRef J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, Demonstration of chalcogenide glass racetrack microresonators. Opt. Lett. 33, 761–763 (2008)CrossRef
81.
Zurück zum Zitat Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J.D. Musgraves, K. Richardson, K.D. Dobson, R. Birkmire, J. Hu, High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates. Adv. Opt. Mater. 2, 478–486 (2014)CrossRef Y. Zou, D. Zhang, H. Lin, L. Li, L. Moreel, J. Zhou, Q. Du, O. Ogbuu, S. Danto, J.D. Musgraves, K. Richardson, K.D. Dobson, R. Birkmire, J. Hu, High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates. Adv. Opt. Mater. 2, 478–486 (2014)CrossRef
82.
Zurück zum Zitat T. Han, S. Madden, D. Bulla, B. Luther-Davies, Low loss chalcogenide glass waveguides by thermal nano-imprint lithography. Opt. Express 18, 19286–19291 (2010)CrossRef T. Han, S. Madden, D. Bulla, B. Luther-Davies, Low loss chalcogenide glass waveguides by thermal nano-imprint lithography. Opt. Express 18, 19286–19291 (2010)CrossRef
83.
Zurück zum Zitat L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 8, 643–649 (2014)CrossRef L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 8, 643–649 (2014)CrossRef
Metadaten
Titel
Selenide Glass Fibers for Biochemical Infrared Sensing
verfasst von
Pierre Lucas, Ph.D.
Bruno Bureau, Ph.D.
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-41190-3_8

Neuer Inhalt