Skip to main content
Erschienen in: Soft Computing 3/2018

14.10.2016 | Methodologies and Application

Self-adaptive kernel K-means algorithm based on the shuffled frog leaping algorithm

verfasst von: Shuyan Fan, Shifei Ding, Yu Xue

Erschienen in: Soft Computing | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Kernel K-means can handle nonlinearly separate datasets by mapping the input datasets into a high-dimensional feature space. The kernel matrix reflects the inner structure of data, so it is a key to construct an appropriate kernel matrix. However, many kernel-based methods need to be set kernel parameter artificially in advance. It is difficult to set an appropriate kernel parameter for each dataset artificially, which limits the performance of the kernel K-means algorithm to some extent. It is necessary to design a method which can adjust the kernel parameter automatically according to the data structure. In addition, the number of clusters also needs to be set. To overcome these challenges, this paper proposed a self-adaptive kernel K-means based on the shuffled frog leaping algorithm, which regard the kernel parameter and the number of clusters as the position information of the frog. We designed a clustering validity index named Between-Within Proportion suitable for the kernel space (KBWP) by modifying the clustering validity index Between-Within Proportion (BWP). Treat KBWP as fitness in the shuffled frog leaping algorithm, and then do local and global optimization until the max iterations. The kernel parameter and the number of clusters corresponding to the maximum fitness are optimal. We experimentally verify our algorithm on artificial datasets and real datasets. Experimental results demonstrate the effectiveness and good performance of the proposed algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bach F, Jordan M (2003) Learning spectral clustering. In: Proceedings of neural information processing systems (NIPS2003), pp 305–312 Bach F, Jordan M (2003) Learning spectral clustering. In: Proceedings of neural information processing systems (NIPS2003), pp 305–312
Zurück zum Zitat Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, OxfordMATH Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, OxfordMATH
Zurück zum Zitat Bandyopadhyay S, Maulik U (2002) Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit 35(3):1197–1208CrossRefMATH Bandyopadhyay S, Maulik U (2002) Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit 35(3):1197–1208CrossRefMATH
Zurück zum Zitat Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Sourc Plan Manag 129(3):210–225CrossRef Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Sourc Plan Manag 129(3):210–225CrossRef
Zurück zum Zitat Filippone M, CamastraF F, Masulli F et al (2008) A survey of kernel and spectral methods for clustering. Pattern Recognit 41(1):176–190CrossRefMATH Filippone M, CamastraF F, Masulli F et al (2008) A survey of kernel and spectral methods for clustering. Pattern Recognit 41(1):176–190CrossRefMATH
Zurück zum Zitat Gu B, Sheng VS, Tay KY et al (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Sys 26(7):1403–1416MathSciNetCrossRef Gu B, Sheng VS, Tay KY et al (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Sys 26(7):1403–1416MathSciNetCrossRef
Zurück zum Zitat Handhayani T, Hiryanto L (2015) Intelligent kernel k-means for clustering gene expression. Proced Comput Sci 59:171–177CrossRef Handhayani T, Hiryanto L (2015) Intelligent kernel k-means for clustering gene expression. Proced Comput Sci 59:171–177CrossRef
Zurück zum Zitat Hasanien HM (2015) Shuffled frog leaping algorithm for photovoltaic model identification. Sustain Energy IEEE Trans 6(2):509–515CrossRef Hasanien HM (2015) Shuffled frog leaping algorithm for photovoltaic model identification. Sustain Energy IEEE Trans 6(2):509–515CrossRef
Zurück zum Zitat Hojjat A, Sarma KC (2014) Fuzzy genetic algorithm for optimization of steel structures. J Struct Eng 126(5):596–604 Hojjat A, Sarma KC (2014) Fuzzy genetic algorithm for optimization of steel structures. J Struct Eng 126(5):596–604
Zurück zum Zitat Jing CY, Sun H, Zhang PW (2014) A clustering algorithm applying to transportation market segment. Appl Mech Mater 505:735–739CrossRef Jing CY, Sun H, Zhang PW (2014) A clustering algorithm applying to transportation market segment. Appl Mech Mater 505:735–739CrossRef
Zurück zum Zitat Li Y, Yu F (2009) A new validity function for fuzzy clustering. IEEE Comput Intell Nat Comput 1:462–465 Li Y, Yu F (2009) A new validity function for fuzzy clustering. IEEE Comput Intell Nat Comput 1:462–465
Zurück zum Zitat Li YY, Gong MG, Zhang TR (2013) Automatic kernel clustering with quantum-behaved particle swarm optimization algorithm.In: 2013 IEEE workshop on memetic computing, pp 72–79 Li YY, Gong MG, Zhang TR (2013) Automatic kernel clustering with quantum-behaved particle swarm optimization algorithm.In: 2013 IEEE workshop on memetic computing, pp 72–79
Zurück zum Zitat Mühlenbein H, Schlierkamp-Voosen D (2017) Predictive models for the breeder genetic algorithm I. Continuous parameter optimization. Evolut Comput 1(1):25–49 Mühlenbein H, Schlierkamp-Voosen D (2017) Predictive models for the breeder genetic algorithm I. Continuous parameter optimization. Evolut Comput 1(1):25–49
Zurück zum Zitat Nesamalar JJD, Venkatesh P, Raja SC (2016) Managing multi-line power congestion by using hybrid nelder-mead-fuzzy adaptive particle swarm optimization (HNM-FAPSO). Appl Soft Comput 43:222–234CrossRef Nesamalar JJD, Venkatesh P, Raja SC (2016) Managing multi-line power congestion by using hybrid nelder-mead-fuzzy adaptive particle swarm optimization (HNM-FAPSO). Appl Soft Comput 43:222–234CrossRef
Zurück zum Zitat Omran M, Salman A, Engelbrecht AP (2005) Dynamic clustering using particle swarm optimization with application in unsupervised image classification. In: Fifth world enformatika conference (ICCI2005), vol 9, no 11, pp 1307–6884 Omran M, Salman A, Engelbrecht AP (2005) Dynamic clustering using particle swarm optimization with application in unsupervised image classification. In: Fifth world enformatika conference (ICCI2005), vol 9, no 11, pp 1307–6884
Zurück zum Zitat Pena JM, Lozano JA, Larranaga P (1999) An empirical comparison of four initialization methods for the K-means algorithm. Pattern Recognit Lett 20(10):1027–1040CrossRef Pena JM, Lozano JA, Larranaga P (1999) An empirical comparison of four initialization methods for the K-means algorithm. Pattern Recognit Lett 20(10):1027–1040CrossRef
Zurück zum Zitat Sahu K, Shrivastava SK (2015) Kernel K-means clustering for phishing website and malware categorization. Int J Comput Appl 111(9):20–25 Sahu K, Shrivastava SK (2015) Kernel K-means clustering for phishing website and malware categorization. Int J Comput Appl 111(9):20–25
Zurück zum Zitat Shi Y (2004) Particle swarm optimization. IEEE. Connect 2(1):8–13 Shi Y (2004) Particle swarm optimization. IEEE. Connect 2(1):8–13
Zurück zum Zitat Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(2):341–359MathSciNetCrossRefMATH Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(2):341–359MathSciNetCrossRefMATH
Zurück zum Zitat Sun JG, Liu J, Zhao LY (2008) Clustering algorithms research. J Softw 19(3):48–61 Sun JG, Liu J, Zhao LY (2008) Clustering algorithms research. J Softw 19(3):48–61
Zurück zum Zitat Swagatam D, Ajith A (2008) Automatic kernel clustering with a multi-elitist particles warm optimization algorithm. Pattern Recognit Lett 29(5):688–699CrossRef Swagatam D, Ajith A (2008) Automatic kernel clustering with a multi-elitist particles warm optimization algorithm. Pattern Recognit Lett 29(5):688–699CrossRef
Zurück zum Zitat Tsapanos N, Tefas A, Nikolaidis N et al (2016) Efficient mapreduce kernel K-means for big data clustering. In: Hellenic conference on artificial intelligence ACM Tsapanos N, Tefas A, Nikolaidis N et al (2016) Efficient mapreduce kernel K-means for big data clustering. In: Hellenic conference on artificial intelligence ACM
Zurück zum Zitat Venter G, Sobieszczanskisobieski J (2015) Particle swarm optimization. In: International conference on biomedical engineering and informatics, pp 129–132 Venter G, Sobieszczanskisobieski J (2015) Particle swarm optimization. In: International conference on biomedical engineering and informatics, pp 129–132
Zurück zum Zitat Wen X, Shao L, Xue Y et al (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406CrossRef Wen X, Shao L, Xue Y et al (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406CrossRef
Zurück zum Zitat Xie JY, Jiang S, Xie WX et al (2011) An efficient global k-means clustering algorithm. J Comput (China) 6(2):271–279 Xie JY, Jiang S, Xie WX et al (2011) An efficient global k-means clustering algorithm. J Comput (China) 6(2):271–279
Zurück zum Zitat Zelnik-Manor L, Perona P (2005) Self-tuning spectral clustering. Advances in neural information processing systems 17. MIT Press, Cambridge, pp 1601–1608 Zelnik-Manor L, Perona P (2005) Self-tuning spectral clustering. Advances in neural information processing systems 17. MIT Press, Cambridge, pp 1601–1608
Zurück zum Zitat Zhang LJ, Hu XH (2014) Locally adaptive multiple kernel clustering. Neurocomputing 137:92–197 Zhang LJ, Hu XH (2014) Locally adaptive multiple kernel clustering. Neurocomputing 137:92–197
Zurück zum Zitat Zhang L, Zhou WD, Jiao LC (2002) Kernel clustering algorithm. Chin J Comput 25(6):587–590 Zhang L, Zhou WD, Jiao LC (2002) Kernel clustering algorithm. Chin J Comput 25(6):587–590
Zurück zum Zitat Zhang XY, Wang W, Nørvag K et al (2010) K-AP: generating specified K clusters by efficient affinity propagation. In: Proceedings 2010 10th IEEE international conference on data mining (ICDM 2010), pp 1187–1192 Zhang XY, Wang W, Nørvag K et al (2010) K-AP: generating specified K clusters by efficient affinity propagation. In: Proceedings 2010 10th IEEE international conference on data mining (ICDM 2010), pp 1187–1192
Zurück zum Zitat Zhang X, Liu J, Zhang X (2014) Kernel k-means clustering optimized by bare bones differential evolution algorithm. In: International conference on natural computation IEEE, pp 693–697 Zhang X, Liu J, Zhang X (2014) Kernel k-means clustering optimized by bare bones differential evolution algorithm. In: International conference on natural computation IEEE, pp 693–697
Zurück zum Zitat Zheng YH, Jeon B, Xu DH et al (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973 Zheng YH, Jeon B, Xu DH et al (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973
Metadaten
Titel
Self-adaptive kernel K-means algorithm based on the shuffled frog leaping algorithm
verfasst von
Shuyan Fan
Shifei Ding
Yu Xue
Publikationsdatum
14.10.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 3/2018
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-016-2389-2

Weitere Artikel der Ausgabe 3/2018

Soft Computing 3/2018 Zur Ausgabe

Methodologies and Application

Kripke semantics for fuzzy logics