Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Self-assembled Nanomaterials for Bacterial Infection Diagnosis and Therapy

verfasst von : Li-Li Li

Erschienen in: In Vivo Self-Assembly Nanotechnology for Biomedical Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Self-assembled nanomaterials are composed of building blocks through non-covalent interaction and spontaneously arranged into well-ordered nanostructures with defined functions. The well-organized arrangement and the two-/three-dimensional nanostructure of the architectures endow the nanomaterials abundant excellent biofunctions for bacterial infection detection and therapy applications. Beyond nature-inspired sources, the hybrid artificial nanomaterials including inorganic nanoparticles, nanosized small synthetic molecules assemblies, self-assembled multilayer polymers are reviewed in this chapter. In addition, the design concept, assembled driving forces, nanostructural effect, antimicrobial mechanism, detection methods are also discussed and summarized. As the promising field, in vivo self-assembled nanomaterials with specific stimuli-responsiveness and surprised biofunctions are also included in this chapter to explore and fabricate fascinated self-assembled nanomaterials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes challenges and responses. Nat Med 10(12 Suppl):S122–S129CrossRef Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes challenges and responses. Nat Med 10(12 Suppl):S122–S129CrossRef
2.
Zurück zum Zitat Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440CrossRef Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440CrossRef
3.
Zurück zum Zitat Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, Zhang S, Lu JR (2010) Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 39(9):3480–3498CrossRef Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, Zhang S, Lu JR (2010) Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 39(9):3480–3498CrossRef
4.
Zurück zum Zitat Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269CrossRef Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269CrossRef
5.
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRef
6.
Zurück zum Zitat Zhou Y, Huang W, Liu J, Zhu X, Yan D (2010) Self-Assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22(41):4567–4590CrossRef Zhou Y, Huang W, Liu J, Zhu X, Yan D (2010) Self-Assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22(41):4567–4590CrossRef
7.
Zurück zum Zitat Liu F, Soh Yan Ni A, Lim Y, Mohanram H, Bhattacharjya S, Xing B (2012) Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of gram-negative bacteria strains. Bioconjug Chem 23(8):1639–1647CrossRef Liu F, Soh Yan Ni A, Lim Y, Mohanram H, Bhattacharjya S, Xing B (2012) Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of gram-negative bacteria strains. Bioconjug Chem 23(8):1639–1647CrossRef
8.
Zurück zum Zitat Silva ZS Jr, Bussadori SK, Fernandes KP, Huang YY, Hamblin MR (2015) Animal models for photodynamic therapy (PDT). Biosci Rep 35(6):e00265CrossRef Silva ZS Jr, Bussadori SK, Fernandes KP, Huang YY, Hamblin MR (2015) Animal models for photodynamic therapy (PDT). Biosci Rep 35(6):e00265CrossRef
9.
Zurück zum Zitat Sengupta S, Würthner F (2013) Chlorophyll J-Aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc Chem Res 46(11):2498–2512CrossRef Sengupta S, Würthner F (2013) Chlorophyll J-Aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc Chem Res 46(11):2498–2512CrossRef
10.
Zurück zum Zitat Mukherjee S, Vaishnava S, Hooper LV (2008) Multi-layered regulation of intestinal antimicrobial defense. Cell Mol Life Sci 65(19):3019–3027CrossRef Mukherjee S, Vaishnava S, Hooper LV (2008) Multi-layered regulation of intestinal antimicrobial defense. Cell Mol Life Sci 65(19):3019–3027CrossRef
11.
Zurück zum Zitat Zhu X, Jun Loh X (2015) Layer-by-layer assemblies for antibacterial applications. Biomater Sci 3(12):1505–1518CrossRef Zhu X, Jun Loh X (2015) Layer-by-layer assemblies for antibacterial applications. Biomater Sci 3(12):1505–1518CrossRef
12.
Zurück zum Zitat Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRef Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRef
13.
Zurück zum Zitat Tarpley RJ (2014) Antibiotics: discontinue low-dose use. Science 343(6167):136–137CrossRef Tarpley RJ (2014) Antibiotics: discontinue low-dose use. Science 343(6167):136–137CrossRef
14.
Zurück zum Zitat Xing B, Yu C-W, Chow K-H, Ho P-L, Fu D, Xu B (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124(50):14846–14847CrossRef Xing B, Yu C-W, Chow K-H, Ho P-L, Fu D, Xu B (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124(50):14846–14847CrossRef
15.
Zurück zum Zitat Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FW (2013) Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug ChemCrossRef Bunschoten A, Welling MM, Termaat MF, Sathekge M, van Leeuwen FW (2013) Development and prospects of dedicated tracers for the molecular imaging of bacterial infections. Bioconjug ChemCrossRef
16.
Zurück zum Zitat Wang H, Zhou Y, Jiang X, Sun B, Zhu Y, Wang H, Su Y, He Y (2015) Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced raman scattering multifunctional chip. Angew Chem Int Ed 54(17):5132–5136CrossRef Wang H, Zhou Y, Jiang X, Sun B, Zhu Y, Wang H, Su Y, He Y (2015) Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced raman scattering multifunctional chip. Angew Chem Int Ed 54(17):5132–5136CrossRef
17.
Zurück zum Zitat de Oliveira TV, Soares NdFF, Silva DJ, de Andrade NJ, Medeiros EAA, Badaró AT (2013) Development of PDA/Phospholipids/Lysine vesicles to detect pathogenic bacteria. Sens Actuat B Chem 188:385–392CrossRef de Oliveira TV, Soares NdFF, Silva DJ, de Andrade NJ, Medeiros EAA, Badaró AT (2013) Development of PDA/Phospholipids/Lysine vesicles to detect pathogenic bacteria. Sens Actuat B Chem 188:385–392CrossRef
18.
Zurück zum Zitat Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H (2016) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 28(2):254–262CrossRef Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H (2016) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 28(2):254–262CrossRef
19.
Zurück zum Zitat Feng G, Yuan Y, Fang H, Zhang R, Xing B, Zhang G, Zhang D, Liu B (2015) A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria. Chem Commun 51(62):12490–12493CrossRef Feng G, Yuan Y, Fang H, Zhang R, Xing B, Zhang G, Zhang D, Liu B (2015) A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria. Chem Commun 51(62):12490–12493CrossRef
20.
Zurück zum Zitat Zhao X, Zhang S (2006) Molecular designer self-assembling peptides. Chem Soc Rev 35(11):1105–1110CrossRef Zhao X, Zhang S (2006) Molecular designer self-assembling peptides. Chem Soc Rev 35(11):1105–1110CrossRef
21.
Zurück zum Zitat Xu C, Liu R, Mehta AK, Guerrero-Ferreira RC, Wright ER, Dunin-Horkawicz S, Morris K, Serpell LC, Zuo X, Wall JS, Conticello VP (2013) Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J Am Chem Soc 135(41):15565–15578CrossRef Xu C, Liu R, Mehta AK, Guerrero-Ferreira RC, Wright ER, Dunin-Horkawicz S, Morris K, Serpell LC, Zuo X, Wall JS, Conticello VP (2013) Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J Am Chem Soc 135(41):15565–15578CrossRef
22.
Zurück zum Zitat Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3(3–4):22–30CrossRef Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3(3–4):22–30CrossRef
23.
Zurück zum Zitat Rubin DJ, Amini S, Zhou F, Su H, Miserez A, Joshi NS (2015) Structural, nanomechanical, and computational characterization of d, l-Cyclic peptide assemblies. ACS Nano 9(3):3360–3368CrossRef Rubin DJ, Amini S, Zhou F, Su H, Miserez A, Joshi NS (2015) Structural, nanomechanical, and computational characterization of d, l-Cyclic peptide assemblies. ACS Nano 9(3):3360–3368CrossRef
24.
Zurück zum Zitat Cormier AR, Pang X, Zimmerman MI, Zhou H-X, Paravastu AK (2013) Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7(9):7562–7572CrossRef Cormier AR, Pang X, Zimmerman MI, Zhou H-X, Paravastu AK (2013) Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano 7(9):7562–7572CrossRef
25.
Zurück zum Zitat Huang C-C, Ravindran S, Yin Z, George A (2014) 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering. Biomaterials 35(20):5316–5326CrossRef Huang C-C, Ravindran S, Yin Z, George A (2014) 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering. Biomaterials 35(20):5316–5326CrossRef
26.
Zurück zum Zitat Wu EC, Zhang S, Hauser CAE (2012) Self-assembling peptides as cell-interactive scaffolds. Adv Funct Mater 22(3):456–468CrossRef Wu EC, Zhang S, Hauser CAE (2012) Self-assembling peptides as cell-interactive scaffolds. Adv Funct Mater 22(3):456–468CrossRef
27.
Zurück zum Zitat Lin BF, Marullo RS, Robb MJ, Krogstad DV, Antoni P, Hawker CJ, Campos LM, Tirrell MV (2011) De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide Amphiphile assembly. Nano Lett 11(9):3946–3950CrossRef Lin BF, Marullo RS, Robb MJ, Krogstad DV, Antoni P, Hawker CJ, Campos LM, Tirrell MV (2011) De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide Amphiphile assembly. Nano Lett 11(9):3946–3950CrossRef
28.
Zurück zum Zitat Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49(18):1850–1852CrossRef Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49(18):1850–1852CrossRef
29.
Zurück zum Zitat Irwansyah I, Li Y-Q, Shi W, Qi D, Leow WR, Tang MBY, Li S, Chen X (2015) Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv Mater 27(4):648–654CrossRef Irwansyah I, Li Y-Q, Shi W, Qi D, Leow WR, Tang MBY, Li S, Chen X (2015) Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv Mater 27(4):648–654CrossRef
30.
Zurück zum Zitat Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916CrossRef Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916CrossRef
31.
Zurück zum Zitat Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799CrossRef Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799CrossRef
32.
Zurück zum Zitat Li L-L, Qi G-B, Yu F, Liu S-J, Wang H (2015) An adaptive biointerface from self-assembled functional peptides for tissue engineering. Adv Mater 27(20):3181–3188CrossRef Li L-L, Qi G-B, Yu F, Liu S-J, Wang H (2015) An adaptive biointerface from self-assembled functional peptides for tissue engineering. Adv Mater 27(20):3181–3188CrossRef
33.
Zurück zum Zitat Guyomard A, Dé E, Jouenne T, Malandain J-J, Muller G, Glinel K (2008) Incorporation of a hydrophobic antibacterial peptide into Amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18(5):758–765CrossRef Guyomard A, Dé E, Jouenne T, Malandain J-J, Muller G, Glinel K (2008) Incorporation of a hydrophobic antibacterial peptide into Amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18(5):758–765CrossRef
34.
Zurück zum Zitat Li P, Poon YF, Li W, Zhu H-Y, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang E-T, Mu Y, Li CM, Chang MW, Jan Leong SS, Chan-Park MB (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156CrossRef Li P, Poon YF, Li W, Zhu H-Y, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang E-T, Mu Y, Li CM, Chang MW, Jan Leong SS, Chan-Park MB (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156CrossRef
35.
Zurück zum Zitat Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463CrossRef Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463CrossRef
36.
Zurück zum Zitat Li LL, Zeng Q, Liu WJ, Hu XF, Li Y, Pan J, Wan D, Wang H (2016) Quantitative analysis of caspase-1 activity in living cells through dynamic equilibrium of chlorophyll-based nano-assembly modulated photoacoustic signals. ACS Appl Mater Interfaces 8(28):17936–17943CrossRef Li LL, Zeng Q, Liu WJ, Hu XF, Li Y, Pan J, Wan D, Wang H (2016) Quantitative analysis of caspase-1 activity in living cells through dynamic equilibrium of chlorophyll-based nano-assembly modulated photoacoustic signals. ACS Appl Mater Interfaces 8(28):17936–17943CrossRef
37.
Zurück zum Zitat Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472CrossRef Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472CrossRef
38.
Zurück zum Zitat Ravi J, Bella A, Correia AJV, Lamarre B, Ryadnov MG (2015) Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides. Phys Chem Chem Phys 17(24):15608–15614CrossRef Ravi J, Bella A, Correia AJV, Lamarre B, Ryadnov MG (2015) Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides. Phys Chem Chem Phys 17(24):15608–15614CrossRef
39.
Zurück zum Zitat Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro 3(3):238–250CrossRef Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro 3(3):238–250CrossRef
40.
Zurück zum Zitat Debnath S, Shome A, Das D, Das PK (2010) Hydrogelation through self-assembly of FMOC-peptide functionalized cationic Amphiphiles: potent antibacterial agent. J Phys Chem B 114(13):4407–4415CrossRef Debnath S, Shome A, Das D, Das PK (2010) Hydrogelation through self-assembly of FMOC-peptide functionalized cationic Amphiphiles: potent antibacterial agent. J Phys Chem B 114(13):4407–4415CrossRef
41.
Zurück zum Zitat Li P, Li X, Saravanan R, Li CM, Leong SSJ (2012) Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2(10):4031–4044CrossRef Li P, Li X, Saravanan R, Li CM, Leong SSJ (2012) Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2(10):4031–4044CrossRef
42.
Zurück zum Zitat Fukushima K, Tan JP, Korevaar PA, Yang YY, Pitera J, Nelson A, Maune H, Coady DJ, Frommer JE, Engler AC, Huang Y, Xu K, Ji Z, Qiao Y, Fan W, Li L, Wiradharma N, Meijer EW, Hedrick JL (2012) Broad-spectrum antimicrobial supramolecular assemblies with distinctive size and shape. ACS Nano 6(10):9191–9199CrossRef Fukushima K, Tan JP, Korevaar PA, Yang YY, Pitera J, Nelson A, Maune H, Coady DJ, Frommer JE, Engler AC, Huang Y, Xu K, Ji Z, Qiao Y, Fan W, Li L, Wiradharma N, Meijer EW, Hedrick JL (2012) Broad-spectrum antimicrobial supramolecular assemblies with distinctive size and shape. ACS Nano 6(10):9191–9199CrossRef
43.
Zurück zum Zitat Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463CrossRef Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463CrossRef
44.
Zurück zum Zitat Hu J, Chen C, Zhang S, Zhao X, Xu H, Zhao X, Lu JR (2011) Designed antimicrobial and antitumor peptides with high selectivity. Biomacromol 12(11):3839–3843CrossRef Hu J, Chen C, Zhang S, Zhao X, Xu H, Zhao X, Lu JR (2011) Designed antimicrobial and antitumor peptides with high selectivity. Biomacromol 12(11):3839–3843CrossRef
45.
Zurück zum Zitat Shenkarev ZO, Balandin SV, Trunov KI, Paramonov AS, Sukhanov SV, Barsukov LI, Arseniev AS, Ovchinnikova TV (2011) Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry 50(28):6255–6265CrossRef Shenkarev ZO, Balandin SV, Trunov KI, Paramonov AS, Sukhanov SV, Barsukov LI, Arseniev AS, Ovchinnikova TV (2011) Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry 50(28):6255–6265CrossRef
46.
Zurück zum Zitat Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Micro 4(7):529–536CrossRef Peschel A, Sahl H-G (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Micro 4(7):529–536CrossRef
47.
Zurück zum Zitat Salick DA, Pochan DJ, Schneider JP (2009) Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater 21(41):4120–4123CrossRef Salick DA, Pochan DJ, Schneider JP (2009) Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater 21(41):4120–4123CrossRef
48.
Zurück zum Zitat Ong ZY, Gao SJ, Yang YY (2013) Short synthetic β-sheet forming peptide Amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Adv Funct Mater 23(29):3682–3692CrossRef Ong ZY, Gao SJ, Yang YY (2013) Short synthetic β-sheet forming peptide Amphiphiles as broad spectrum antimicrobials with antibiofilm and endotoxin neutralizing capabilities. Adv Funct Mater 23(29):3682–3692CrossRef
49.
Zurück zum Zitat Bhatia S, Camacho LC, Haag R (2016) Pathogen inhibition by multivalent ligand architectures. J Am Chem Soc 138(28):8654–8666CrossRef Bhatia S, Camacho LC, Haag R (2016) Pathogen inhibition by multivalent ligand architectures. J Am Chem Soc 138(28):8654–8666CrossRef
50.
Zurück zum Zitat Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357CrossRef Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357CrossRef
51.
Zurück zum Zitat Cado G, Aslam R, Seon L, Garnier T, Fabre R, Parat A, Chassepot A, Voegel JC, Senger B, Schneider F, Frere Y, Jierry L, Schaaf P, Kerdjoudj H, Metz-Boutigue MH, Boulmedais F (2013) Self-defensive biomaterial coating against bacteria and yeasts: polysaccharide multilayer film with embedded antimicrobial peptide. Adv Funct Mater 23(38):4801–4809 Cado G, Aslam R, Seon L, Garnier T, Fabre R, Parat A, Chassepot A, Voegel JC, Senger B, Schneider F, Frere Y, Jierry L, Schaaf P, Kerdjoudj H, Metz-Boutigue MH, Boulmedais F (2013) Self-defensive biomaterial coating against bacteria and yeasts: polysaccharide multilayer film with embedded antimicrobial peptide. Adv Funct Mater 23(38):4801–4809
52.
Zurück zum Zitat Chen L, Liang JF (2013) Peptide fibrils with altered stability, activity and cell selectivity. Biomacromolecules 14(7):2326–2331CrossRef Chen L, Liang JF (2013) Peptide fibrils with altered stability, activity and cell selectivity. Biomacromolecules 14(7):2326–2331CrossRef
53.
Zurück zum Zitat Li L-l, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthcare Mater:1351–1360 Li L-l, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthcare Mater:1351–1360
54.
Zurück zum Zitat Wang H, Xu K, Liu L, Tan JPK, Chen Y, Li Y, Fan W, Wei Z, Sheng J, Yang Y-Y, Li L (2010) The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus Neoformans for the treatment of meningitis. Biomaterials 31(10):2874–2881CrossRef Wang H, Xu K, Liu L, Tan JPK, Chen Y, Li Y, Fan W, Wei Z, Sheng J, Yang Y-Y, Li L (2010) The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus Neoformans for the treatment of meningitis. Biomaterials 31(10):2874–2881CrossRef
55.
Zurück zum Zitat Chen C, Hu J, Zhang S, Zhou P, Zhao X, Xu H, Zhao X, Yaseen M, Lu JR (2012) Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Biomaterials 33(2):592–603CrossRef Chen C, Hu J, Zhang S, Zhou P, Zhao X, Xu H, Zhao X, Yaseen M, Lu JR (2012) Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Biomaterials 33(2):592–603CrossRef
56.
Zurück zum Zitat Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Pept Sci 94(1):1–18CrossRef Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Pept Sci 94(1):1–18CrossRef
57.
Zurück zum Zitat Sikorska E, Dawgul M, Greber K, Iłowska E, Pogorzelska A (1838) Kamysz W (2014) Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. BBA Biomembranes 10:2625–2634 Sikorska E, Dawgul M, Greber K, Iłowska E, Pogorzelska A (1838) Kamysz W (2014) Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies. BBA Biomembranes 10:2625–2634
58.
Zurück zum Zitat Tian X, Sun F, Zhou X-R, Luo S-Z, Chen L (2015) Role of peptide self-assembly in antimicrobial peptides. J Pept Sci 21(7):530–539CrossRef Tian X, Sun F, Zhou X-R, Luo S-Z, Chen L (2015) Role of peptide self-assembly in antimicrobial peptides. J Pept Sci 21(7):530–539CrossRef
59.
Zurück zum Zitat Li L-L, Ma H-L, Qi G-B, Zhang D, Yu F, Hu Z, Wang H (2015) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 27(20):3181–3188CrossRef Li L-L, Ma H-L, Qi G-B, Zhang D, Yu F, Hu Z, Wang H (2015) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 27(20):3181–3188CrossRef
60.
Zurück zum Zitat Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37(4):664–675CrossRef Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37(4):664–675CrossRef
61.
Zurück zum Zitat Torrent M, Valle J, Nogués MV, Boix E, Andreu D (2011) The generation of antimicrobial peptide activity: a trade-off between charge and aggregation? Angew Chem Int Ed 50(45):10686–10689CrossRef Torrent M, Valle J, Nogués MV, Boix E, Andreu D (2011) The generation of antimicrobial peptide activity: a trade-off between charge and aggregation? Angew Chem Int Ed 50(45):10686–10689CrossRef
62.
Zurück zum Zitat Chen C, Pan F, Zhang S, Hu J, Cao M, Wang J, Xu H, Zhao X, Lu JR (2010) Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromol 11(2):402–411CrossRef Chen C, Pan F, Zhang S, Hu J, Cao M, Wang J, Xu H, Zhao X, Lu JR (2010) Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromol 11(2):402–411CrossRef
63.
Zurück zum Zitat Xu D, Jiang L, Singh A, Dustin D, Yang M, Liu L, Lund R, Sellati TJ, Dong H (2015) Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity. Chem Commun 51(7):1289–1292CrossRef Xu D, Jiang L, Singh A, Dustin D, Yang M, Liu L, Lund R, Sellati TJ, Dong H (2015) Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity. Chem Commun 51(7):1289–1292CrossRef
64.
Zurück zum Zitat Chairatana P, Nolan EM (2014) Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J Am Chem Soc 136(38):13267–13276CrossRef Chairatana P, Nolan EM (2014) Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J Am Chem Soc 136(38):13267–13276CrossRef
65.
Zurück zum Zitat Joshi S, Dewangan RP, Yar MS, Rawat DS, Pasha S (2015) N-terminal aromatic tag induced self assembly of tryptophan-arginine rich ultra short sequences and their potent antibacterial activity. RSC Adv 5(84):68610–68620CrossRef Joshi S, Dewangan RP, Yar MS, Rawat DS, Pasha S (2015) N-terminal aromatic tag induced self assembly of tryptophan-arginine rich ultra short sequences and their potent antibacterial activity. RSC Adv 5(84):68610–68620CrossRef
66.
Zurück zum Zitat Glinel K, Jonas AM, Jouenne T, Jrm Leprince, Galas L, Huck WTS (2008) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1):71–77CrossRef Glinel K, Jonas AM, Jouenne T, Jrm Leprince, Galas L, Huck WTS (2008) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1):71–77CrossRef
67.
Zurück zum Zitat Lim K, Chua RRY, Saravanan R, Basu A, Mishra B, Tambyah PA, Ho B, Leong SSJ (2013) Immobilization studies of an engineered Arginine–Tryptophan-Rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 5(13):6412–6422CrossRef Lim K, Chua RRY, Saravanan R, Basu A, Mishra B, Tambyah PA, Ho B, Leong SSJ (2013) Immobilization studies of an engineered Arginine–Tryptophan-Rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 5(13):6412–6422CrossRef
68.
Zurück zum Zitat Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8(5):1359–1384CrossRef Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8(5):1359–1384CrossRef
69.
Zurück zum Zitat Locock KES, Michl TD, Stevens N, Hayball JD, Vasilev K, Postma A, Griesser HJ, Meagher L, Haeussler M (2014) Antimicrobial polymethacrylates synthesized as mimics of tryptophan-rich cationic peptides. ACS Macro Lett 3(4):319–323CrossRef Locock KES, Michl TD, Stevens N, Hayball JD, Vasilev K, Postma A, Griesser HJ, Meagher L, Haeussler M (2014) Antimicrobial polymethacrylates synthesized as mimics of tryptophan-rich cationic peptides. ACS Macro Lett 3(4):319–323CrossRef
70.
Zurück zum Zitat Ding X, Yang C, Lim TP, Hsu LY, Engler AC, Hedrick JL, Yang YY (2012) Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 33(28):6593–6603CrossRef Ding X, Yang C, Lim TP, Hsu LY, Engler AC, Hedrick JL, Yang YY (2012) Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 33(28):6593–6603CrossRef
71.
Zurück zum Zitat Park J, Kim J, Singha K, Han D-K, Park H, Kim WJ (2013) Nitric oxide integrated polyethylenimine-based tri-block copolymer for efficient antibacterial activity. Biomaterials 34(34):8766–8775CrossRef Park J, Kim J, Singha K, Han D-K, Park H, Kim WJ (2013) Nitric oxide integrated polyethylenimine-based tri-block copolymer for efficient antibacterial activity. Biomaterials 34(34):8766–8775CrossRef
72.
Zurück zum Zitat Lu Y, Slomberg DL, Shah A, Schoenfisch MH (2013) Nitric oxide-releasing Amphiphilic Poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromol 14(10):3589–3598CrossRef Lu Y, Slomberg DL, Shah A, Schoenfisch MH (2013) Nitric oxide-releasing Amphiphilic Poly(amidoamine) (PAMAM) dendrimers as antibacterial agents. Biomacromol 14(10):3589–3598CrossRef
73.
Zurück zum Zitat Shepherd J, Sarker P, Swindells K, Douglas I, MacNeil S, Swanson L, Rimmer S (2010) Binding bacteria to highly branched Poly(N-isopropyl acrylamide) Modified with Vancomycin induces the coil-to-globule transition. J Am Chem Soc 132(6):1736–1737CrossRef Shepherd J, Sarker P, Swindells K, Douglas I, MacNeil S, Swanson L, Rimmer S (2010) Binding bacteria to highly branched Poly(N-isopropyl acrylamide) Modified with Vancomycin induces the coil-to-globule transition. J Am Chem Soc 132(6):1736–1737CrossRef
74.
Zurück zum Zitat Shrestha A, Kishen A (2012) The effect of tissue inhibitors on the antibacterial activity of Chitosan nanoparticles and photodynamic therapy. J Endod 38(9):1275–1278CrossRef Shrestha A, Kishen A (2012) The effect of tissue inhibitors on the antibacterial activity of Chitosan nanoparticles and photodynamic therapy. J Endod 38(9):1275–1278CrossRef
75.
Zurück zum Zitat Pan Y, Huang X, Shi X, Zhan Y, Fan G, Pan S, Tian J, Deng H, Du Y (2015) Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. Carbohydr Polym 133:229–235CrossRef Pan Y, Huang X, Shi X, Zhan Y, Fan G, Pan S, Tian J, Deng H, Du Y (2015) Antimicrobial application of nanofibrous mats self-assembled with quaternized chitosan and soy protein isolate. Carbohydr Polym 133:229–235CrossRef
76.
Zurück zum Zitat Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF, Hammond PT, Duan H, Chan-Park MB (2012) Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv Mater 24(30):4130–4137CrossRef Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF, Hammond PT, Duan H, Chan-Park MB (2012) Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv Mater 24(30):4130–4137CrossRef
77.
Zurück zum Zitat Lee H, Lee Y, Statz AR, Rho J, Park TG, Messersmith PB (2008) Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater 20(9):1619–1623CrossRef Lee H, Lee Y, Statz AR, Rho J, Park TG, Messersmith PB (2008) Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv Mater 20(9):1619–1623CrossRef
78.
Zurück zum Zitat He Y, Heine E, Keusgen N, Keul H, Möller M (2012) Synthesis and characterization of amphiphilic monodisperse compounds and Poly(ethylene imine)s: influence of their microstructures on the antimicrobial properties. Biomacromol 13(3):612–623CrossRef He Y, Heine E, Keusgen N, Keul H, Möller M (2012) Synthesis and characterization of amphiphilic monodisperse compounds and Poly(ethylene imine)s: influence of their microstructures on the antimicrobial properties. Biomacromol 13(3):612–623CrossRef
79.
Zurück zum Zitat Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, Hedrick JL, Yang Y-Y (2012) Antimicrobial and antifouling hydrogels formed in Situ from Polycarbonate and Poly(ethylene glycol) via Michael addition. Adv Mater 24(48):6484–6489CrossRef Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, Hedrick JL, Yang Y-Y (2012) Antimicrobial and antifouling hydrogels formed in Situ from Polycarbonate and Poly(ethylene glycol) via Michael addition. Adv Mater 24(48):6484–6489CrossRef
80.
Zurück zum Zitat Rawlinson L-AB, SaM Ryan, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ (2009) Antibacterial effects of Poly(2-(dimethylamino ethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromol 11(2):443–453CrossRef Rawlinson L-AB, SaM Ryan, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ (2009) Antibacterial effects of Poly(2-(dimethylamino ethyl)methacrylate) against selected gram-positive and gram-negative bacteria. Biomacromol 11(2):443–453CrossRef
81.
Zurück zum Zitat Qiao Y, Yang C, Coady DJ, Ong ZY, Hedrick JL, Yang Y-Y (2012) Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane. Biomaterials 33(4):1146–1153CrossRef Qiao Y, Yang C, Coady DJ, Ong ZY, Hedrick JL, Yang Y-Y (2012) Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane. Biomaterials 33(4):1146–1153CrossRef
82.
Zurück zum Zitat Muñoz-Bonilla A, Fernández-García M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J 65:46–62CrossRef Muñoz-Bonilla A, Fernández-García M (2015) The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J 65:46–62CrossRef
83.
Zurück zum Zitat Ganewatta MS, Tang C (2015) Controlling macromolecular structures towards effective antimicrobial polymers. Polymer 63:A1–A29CrossRef Ganewatta MS, Tang C (2015) Controlling macromolecular structures towards effective antimicrobial polymers. Polymer 63:A1–A29CrossRef
84.
Zurück zum Zitat Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K (2011) Block versus random Amphiphilic copolymers as antibacterial agents. Biomacromol 12(10):3581–3591CrossRef Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K (2011) Block versus random Amphiphilic copolymers as antibacterial agents. Biomacromol 12(10):3581–3591CrossRef
85.
Zurück zum Zitat Zhu C, Yang Q, Liu L, Lv F, Li S, Yang G, Wang S (2011) Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Adv Mater 23(41):4805–4810CrossRef Zhu C, Yang Q, Liu L, Lv F, Li S, Yang G, Wang S (2011) Multifunctional cationic poly(p-phenylene vinylene) polyelectrolytes for selective recognition, imaging, and killing of bacteria over mammalian cells. Adv Mater 23(41):4805–4810CrossRef
86.
Zurück zum Zitat Yuan W, Wei J, Lu H, Fan L, Du J (2012) Water-dispersible and biodegradable polymer micelles with good antibacterial efficacy. Chem Commun 48(54):6857–6859CrossRef Yuan W, Wei J, Lu H, Fan L, Du J (2012) Water-dispersible and biodegradable polymer micelles with good antibacterial efficacy. Chem Commun 48(54):6857–6859CrossRef
87.
Zurück zum Zitat Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36(4):455–567CrossRef Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36(4):455–567CrossRef
88.
Zurück zum Zitat Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F (2014) Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf B Biointerfaces 123:318–325CrossRef Garcia MT, Ribosa I, Perez L, Manresa A, Comelles F (2014) Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf B Biointerfaces 123:318–325CrossRef
89.
Zurück zum Zitat Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33(19):1613–1631CrossRef Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R (2012) Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun 33(19):1613–1631CrossRef
90.
Zurück zum Zitat Venkataraman S, Zhang Y, Liu L, Yang Y-Y (2010) Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials 31(7):1751–1756CrossRef Venkataraman S, Zhang Y, Liu L, Yang Y-Y (2010) Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures. Biomaterials 31(7):1751–1756CrossRef
91.
Zurück zum Zitat Coady DJ, Ong ZY, Lee PS, Venkataraman S, Chin W, Engler AC, Yang YY, Hedrick JL (2014) Enhancement of cationic antimicrobial materials via cholesterol incorporation. Adv Healthcare Mater 3(6):882–889CrossRef Coady DJ, Ong ZY, Lee PS, Venkataraman S, Chin W, Engler AC, Yang YY, Hedrick JL (2014) Enhancement of cationic antimicrobial materials via cholesterol incorporation. Adv Healthcare Mater 3(6):882–889CrossRef
92.
Zurück zum Zitat Cui D, Szarpak A, Pignot-Paintrand I, Varrot A, Boudou T, Detrembleur C, Jérôme C, Picart C, Auzély-Velty R (2010) Contact-killing polyelectrolyte microcapsules based on Chitosan derivatives. Adv Funct Mater 20(19):3303–3312CrossRef Cui D, Szarpak A, Pignot-Paintrand I, Varrot A, Boudou T, Detrembleur C, Jérôme C, Picart C, Auzély-Velty R (2010) Contact-killing polyelectrolyte microcapsules based on Chitosan derivatives. Adv Funct Mater 20(19):3303–3312CrossRef
93.
Zurück zum Zitat Li LL, Xu JH, Qi GB, Zhao X, Yu F, Wang H (2014) Core-shell supramolecular gelatin nanoparticles for adaptive and on-demand antibiotic delivery. ACS Nano 8(5):4975–4983CrossRef Li LL, Xu JH, Qi GB, Zhao X, Yu F, Wang H (2014) Core-shell supramolecular gelatin nanoparticles for adaptive and on-demand antibiotic delivery. ACS Nano 8(5):4975–4983CrossRef
94.
Zurück zum Zitat Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K (2013) Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromol 14(4):1103–1112CrossRef Baier G, Cavallaro A, Vasilev K, Mailänder V, Musyanovych A, Landfester K (2013) Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromol 14(4):1103–1112CrossRef
95.
Zurück zum Zitat Cao A, Tang Y, Liu Y, Yuan H, Liu L (2013) A strategy for antimicrobial regulation based on fluorescent conjugated oligomer-DNA hybrid hydrogels. Chem Commun 49(49):5574–5576CrossRef Cao A, Tang Y, Liu Y, Yuan H, Liu L (2013) A strategy for antimicrobial regulation based on fluorescent conjugated oligomer-DNA hybrid hydrogels. Chem Commun 49(49):5574–5576CrossRef
96.
Zurück zum Zitat Noimark S, Dunnill CW, Wilson M, Parkin IP (2009) The role of surfaces in catheter-associated infections. Chem Soc Rev 38(12):3435–3448CrossRef Noimark S, Dunnill CW, Wilson M, Parkin IP (2009) The role of surfaces in catheter-associated infections. Chem Soc Rev 38(12):3435–3448CrossRef
97.
Zurück zum Zitat Yuan Y, Sun F, Zhang F, Ren H, Guo M, Cai K, Jing X, Gao X, Zhu G (2013) Targeted synthesis of porous aromatic frameworks and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings. Adv Mater 25(45):6619–6624CrossRef Yuan Y, Sun F, Zhang F, Ren H, Guo M, Cai K, Jing X, Gao X, Zhu G (2013) Targeted synthesis of porous aromatic frameworks and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings. Adv Mater 25(45):6619–6624CrossRef
98.
Zurück zum Zitat Faure E, Falentin-Daudré C, Lanero TS, Vreuls C, Zocchi G, Van De Weerdt C, Martial J, Jérôme C, Duwez A-S, Detrembleur C (2012) Functional nanogels as platforms for imparting antibacterial, antibiofilm, and antiadhesion activities to stainless steel. Adv Funct Mater 22(24):5271–5282CrossRef Faure E, Falentin-Daudré C, Lanero TS, Vreuls C, Zocchi G, Van De Weerdt C, Martial J, Jérôme C, Duwez A-S, Detrembleur C (2012) Functional nanogels as platforms for imparting antibacterial, antibiofilm, and antiadhesion activities to stainless steel. Adv Funct Mater 22(24):5271–5282CrossRef
99.
Zurück zum Zitat Bai H, Yuan H, Nie C, Wang B, Lv F, Liu L, Wang S (2015) A supramolecular antibiotic switch for antibacterial regulation. Angew Chem Int Ed 54(45):13208–13213CrossRef Bai H, Yuan H, Nie C, Wang B, Lv F, Liu L, Wang S (2015) A supramolecular antibiotic switch for antibacterial regulation. Angew Chem Int Ed 54(45):13208–13213CrossRef
100.
Zurück zum Zitat Laloyaux X, Fautré E, Blin T, Purohit V, Leprince J, Jouenne T, Jonas AM, Glinel K (2010) Temperature-responsive polymer brushes switching from bactericidal to cell-repellent. Adv Mater 22(44):5024–5028CrossRef Laloyaux X, Fautré E, Blin T, Purohit V, Leprince J, Jouenne T, Jonas AM, Glinel K (2010) Temperature-responsive polymer brushes switching from bactericidal to cell-repellent. Adv Mater 22(44):5024–5028CrossRef
101.
Zurück zum Zitat Yoshinari M, Oda Y, Kato T, Okuda K (2001) Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 22(14):2043–2048CrossRef Yoshinari M, Oda Y, Kato T, Okuda K (2001) Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 22(14):2043–2048CrossRef
102.
Zurück zum Zitat Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44(14):5649–5654CrossRef Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44(14):5649–5654CrossRef
103.
Zurück zum Zitat Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534CrossRef Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534CrossRef
104.
Zurück zum Zitat Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817CrossRef Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817CrossRef
105.
Zurück zum Zitat Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbi 73(6):1712–1720CrossRef Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbi 73(6):1712–1720CrossRef
106.
Zurück zum Zitat Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668CrossRef Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668CrossRef
107.
Zurück zum Zitat Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098 Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098
108.
Zurück zum Zitat Pandurangan K, Kitchen JA, Blasco S, Paradisi F, Gunnlaugsson T (2014) Supramolecular pyridyl urea gels as soft matter with antibacterial properties against MRSA and/or E. coli. Chem Commun 50 (74):10819–10822CrossRef Pandurangan K, Kitchen JA, Blasco S, Paradisi F, Gunnlaugsson T (2014) Supramolecular pyridyl urea gels as soft matter with antibacterial properties against MRSA and/or E. coli. Chem Commun 50 (74):10819–10822CrossRef
109.
Zurück zum Zitat Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, Murthy N (2011) Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 10(8):602–607CrossRef Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, Murthy N (2011) Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 10(8):602–607CrossRef
110.
Zurück zum Zitat Chung HJ, Castro CM, Im H, Lee H, Weissleder R (2013) A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol 8(5):369–375CrossRef Chung HJ, Castro CM, Im H, Lee H, Weissleder R (2013) A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol 8(5):369–375CrossRef
111.
Zurück zum Zitat Tseng Y-T, Chang H-Y, Huang C-C (2012) Mass spectrometry-based immunosensor for bacteria using antibody-conjugated gold nanoparticles. Chem Commun 48:8712–8714CrossRef Tseng Y-T, Chang H-Y, Huang C-C (2012) Mass spectrometry-based immunosensor for bacteria using antibody-conjugated gold nanoparticles. Chem Commun 48:8712–8714CrossRef
112.
Zurück zum Zitat Won BY, Yoon HC, Park HG (2008) Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode. Analyst 133(1)CrossRef Won BY, Yoon HC, Park HG (2008) Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode. Analyst 133(1)CrossRef
113.
Zurück zum Zitat Pazos E, Sleep E, Rubert Perez CM, Lee SS, Tantakitti F, Stupp SI (2016) Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: hybrid nanostructures with antimicrobial properties. J Am Chem Soc 138(17):5507–5510CrossRef Pazos E, Sleep E, Rubert Perez CM, Lee SS, Tantakitti F, Stupp SI (2016) Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: hybrid nanostructures with antimicrobial properties. J Am Chem Soc 138(17):5507–5510CrossRef
114.
Zurück zum Zitat Wang Y, Cao L, Guan S, Shi G, Luo Q, Miao L, Thistlethwaite I, Huang Z, Xu J, Liu J (2012) Silver mineralization on self-assembled peptide nanofibers for long term antimicrobial effect. J Mater Chem 22(6):2575–2581CrossRef Wang Y, Cao L, Guan S, Shi G, Luo Q, Miao L, Thistlethwaite I, Huang Z, Xu J, Liu J (2012) Silver mineralization on self-assembled peptide nanofibers for long term antimicrobial effect. J Mater Chem 22(6):2575–2581CrossRef
115.
Zurück zum Zitat Baek K, Liang J, Lim WT, Zhao H, Kim DH, Kong H (2015) In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening. ACS Appl Mater Interfaces 7(28):15359–15367CrossRef Baek K, Liang J, Lim WT, Zhao H, Kim DH, Kong H (2015) In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening. ACS Appl Mater Interfaces 7(28):15359–15367CrossRef
116.
Zurück zum Zitat Shome A, Dutta S, Maiti S, Das PK (2011) In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: development of antibacterial soft nanocomposites. Soft Matter 7(6):3011–3022CrossRef Shome A, Dutta S, Maiti S, Das PK (2011) In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: development of antibacterial soft nanocomposites. Soft Matter 7(6):3011–3022CrossRef
117.
Zurück zum Zitat Wei X, Luo M, Liu H (2014) Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinase-nanosilver complex and polyethylenimine. Colloids Surf B Biointerfaces 116:418–423CrossRef Wei X, Luo M, Liu H (2014) Preparation of the antithrombotic and antimicrobial coating through layer-by-layer self-assembly of nattokinase-nanosilver complex and polyethylenimine. Colloids Surf B Biointerfaces 116:418–423CrossRef
118.
Zurück zum Zitat Agarwal A, Guthrie KM, Czuprynski CJ, Schurr MJ, McAnulty JF, Murphy CJ, Abbott NL (2011) Polymeric multilayers that contain silver nanoparticles can be stamped onto biological tissues to provide antibacterial activity. Adv Funct Mater 21(10):1863–1873CrossRef Agarwal A, Guthrie KM, Czuprynski CJ, Schurr MJ, McAnulty JF, Murphy CJ, Abbott NL (2011) Polymeric multilayers that contain silver nanoparticles can be stamped onto biological tissues to provide antibacterial activity. Adv Funct Mater 21(10):1863–1873CrossRef
119.
Zurück zum Zitat Jia Q, Shan S, Jiang L, Wang Y, Li D (2012) Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. J Appl Polym Sci 125(5):3560–3566CrossRef Jia Q, Shan S, Jiang L, Wang Y, Li D (2012) Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. J Appl Polym Sci 125(5):3560–3566CrossRef
120.
Zurück zum Zitat Lu H, Fan L, Liu QM, Wei JR, Ren TB, Du JZ (2012) Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym Chem 3(8):2217–2227CrossRef Lu H, Fan L, Liu QM, Wei JR, Ren TB, Du JZ (2012) Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym Chem 3(8):2217–2227CrossRef
121.
Zurück zum Zitat Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980CrossRef Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980CrossRef
122.
Zurück zum Zitat Brahmachari S, Mandal SK, Das PK (2014) Fabrication of SWCNT-Ag nanoparticle hybrid included self-assemblies for antibacterial applications. PLoS One 9(9):e106775CrossRef Brahmachari S, Mandal SK, Das PK (2014) Fabrication of SWCNT-Ag nanoparticle hybrid included self-assemblies for antibacterial applications. PLoS One 9(9):e106775CrossRef
123.
Zurück zum Zitat Lv M, Su S, He Y, Huang Q, Hu W, Li D, Fan C, Lee S-T (2010) Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater 22(48):5463–5467CrossRef Lv M, Su S, He Y, Huang Q, Hu W, Li D, Fan C, Lee S-T (2010) Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater 22(48):5463–5467CrossRef
124.
Zurück zum Zitat Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716CrossRef Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716CrossRef
125.
Zurück zum Zitat Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6(3):2656–2664CrossRef Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6(3):2656–2664CrossRef
126.
Zurück zum Zitat Wang L, Luo J, Shan S, Crew E, Yin J, Zhong C-J, Wallek B, Wong SSS (2011) Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal Chem 83(22):8688–8695CrossRef Wang L, Luo J, Shan S, Crew E, Yin J, Zhong C-J, Wallek B, Wong SSS (2011) Bacterial inactivation using silver-coated magnetic nanoparticles as functional antimicrobial agents. Anal Chem 83(22):8688–8695CrossRef
127.
Zurück zum Zitat Pang M, Hu J, Zeng HC (2010) Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J Am Chem Soc 132(31):10771–10785CrossRef Pang M, Hu J, Zeng HC (2010) Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J Am Chem Soc 132(31):10771–10785CrossRef
128.
Zurück zum Zitat Alonso A, Muñoz-Berbel X, Vigués N, Rodríguez-Rodríguez R, Macanás J, Muñoz M, Mas J, Muraviev DN (2013) Superparamagnetic Ag@Co-Nanocomposites on granulated cation exchange polymeric matrices with enhanced antibacterial activity for the environmentally safe purification of water. Adv Funct Mater 23(19):2450–2458CrossRef Alonso A, Muñoz-Berbel X, Vigués N, Rodríguez-Rodríguez R, Macanás J, Muñoz M, Mas J, Muraviev DN (2013) Superparamagnetic Ag@Co-Nanocomposites on granulated cation exchange polymeric matrices with enhanced antibacterial activity for the environmentally safe purification of water. Adv Funct Mater 23(19):2450–2458CrossRef
129.
Zurück zum Zitat Xu J, Zhou X, Gao Z, Song Y-Y, Schmuki P (2016) Visible-light-triggered drug release from TiO2 nanotube arrays: a controllable antibacterial platform. Angew Chem Int Ed 55(2):593–597CrossRef Xu J, Zhou X, Gao Z, Song Y-Y, Schmuki P (2016) Visible-light-triggered drug release from TiO2 nanotube arrays: a controllable antibacterial platform. Angew Chem Int Ed 55(2):593–597CrossRef
130.
Zurück zum Zitat Gehring J, Trepka B, Klinkenberg N, Bronner H, Schleheck D, Polarz S (2016) Sunlight-triggered nanoparticle synergy: teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity. J Am Chem Soc 138(9):3076–3084CrossRef Gehring J, Trepka B, Klinkenberg N, Bronner H, Schleheck D, Polarz S (2016) Sunlight-triggered nanoparticle synergy: teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity. J Am Chem Soc 138(9):3076–3084CrossRef
131.
Zurück zum Zitat Qiu Q, Liu T, Li Z, Ding X (2015) Facile synthesis of N-halamine-labeled silica-polyacrylamide multilayer core-shell nanoparticles for antibacterial ability. J Mater Chem B 3(36):7203–7212CrossRef Qiu Q, Liu T, Li Z, Ding X (2015) Facile synthesis of N-halamine-labeled silica-polyacrylamide multilayer core-shell nanoparticles for antibacterial ability. J Mater Chem B 3(36):7203–7212CrossRef
132.
Zurück zum Zitat Fei J, Zhao J, Du C, Wang A, Zhang H, Dai L, Li J (2014) One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@shell nanostructures and their selective antibacterial applications. ACS Nano 8(8):8529–8536CrossRef Fei J, Zhao J, Du C, Wang A, Zhang H, Dai L, Li J (2014) One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@shell nanostructures and their selective antibacterial applications. ACS Nano 8(8):8529–8536CrossRef
133.
Zurück zum Zitat Pal S, Yoon EJ, Tak YK, Choi EC, Song JM (2009) Synthesis of highly antibacterial nanocrystalline trivalent silver polydiguanide. J Am Chem Soc 131(44):16147–16155CrossRef Pal S, Yoon EJ, Tak YK, Choi EC, Song JM (2009) Synthesis of highly antibacterial nanocrystalline trivalent silver polydiguanide. J Am Chem Soc 131(44):16147–16155CrossRef
134.
Zurück zum Zitat Zhou B, Li Y, Deng H, Hu Y, Li B (2014) Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf B Biointerfaces 116:432–438CrossRef Zhou B, Li Y, Deng H, Hu Y, Li B (2014) Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf B Biointerfaces 116:432–438CrossRef
135.
Zurück zum Zitat L-l Li, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthcare Mater 2(10):1351–1360CrossRef L-l Li, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthcare Mater 2(10):1351–1360CrossRef
136.
Zurück zum Zitat Liu L, Yang J, Xie J, Luo Z, Jiang J, Yang YY, Liu S (2013) The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale 5(9):3834–3840CrossRef Liu L, Yang J, Xie J, Luo Z, Jiang J, Yang YY, Liu S (2013) The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale 5(9):3834–3840CrossRef
137.
Zurück zum Zitat Taglietti A, Diaz Fernandez YA, Amato E, Cucca L, Dacarro G, Grisoli P, Necchi V, Pallavicini P, Pasotti L, Patrini M (2012) Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir 28(21):8140–8148CrossRef Taglietti A, Diaz Fernandez YA, Amato E, Cucca L, Dacarro G, Grisoli P, Necchi V, Pallavicini P, Pasotti L, Patrini M (2012) Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir 28(21):8140–8148CrossRef
138.
Zurück zum Zitat Hsiao C-W, Chen H-L, Liao Z-X, Sureshbabu R, Hsiao H-C, Lin S-J, Chang Y, Sung H-W (2015) Effective photothermal killing of pathogenic bacteria by using spatially tunable colloidal gels with nano-localized heating sources. Adv Funct Mater 25(5):721–728CrossRef Hsiao C-W, Chen H-L, Liao Z-X, Sureshbabu R, Hsiao H-C, Lin S-J, Chang Y, Sung H-W (2015) Effective photothermal killing of pathogenic bacteria by using spatially tunable colloidal gels with nano-localized heating sources. Adv Funct Mater 25(5):721–728CrossRef
139.
Zurück zum Zitat Borovička J, Metheringham WJ, Madden LA, Walton CD, Stoyanov SD, Paunov VN (2013) Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms. J Am Chem Soc 135(14):5282–5285CrossRef Borovička J, Metheringham WJ, Madden LA, Walton CD, Stoyanov SD, Paunov VN (2013) Photothermal colloid antibodies for shape-selective recognition and killing of microorganisms. J Am Chem Soc 135(14):5282–5285CrossRef
140.
Zurück zum Zitat Majumdar P, Nomula R, Zhao J (2014) Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. J Mater Chem C 2(30):5982–5997CrossRef Majumdar P, Nomula R, Zhao J (2014) Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy. J Mater Chem C 2(30):5982–5997CrossRef
141.
Zurück zum Zitat Barroso Á, Grüner M, Forbes T, Denz C, Strassert CA (2016) Spatiotemporally resolved tracking of bacterial responses to ROS-mediated damage at the single-cell level with quantitative functional microscopy. ACS Appl Mater Interfaces 8(24):15046–15057CrossRef Barroso Á, Grüner M, Forbes T, Denz C, Strassert CA (2016) Spatiotemporally resolved tracking of bacterial responses to ROS-mediated damage at the single-cell level with quantitative functional microscopy. ACS Appl Mater Interfaces 8(24):15046–15057CrossRef
142.
Zurück zum Zitat Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H (2016) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 28(2):254–262CrossRef Li LL, Ma HL, Qi GB, Zhang D, Yu F, Hu Z, Wang H (2016) Pathological-condition-driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv Mater 28(2):254–262CrossRef
143.
Zurück zum Zitat Thomas M, Craik JD, Tovmasyan A, Batinic-Haberle I, Benov LT (2015) Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Future Microbiol 10(5):709–724CrossRef Thomas M, Craik JD, Tovmasyan A, Batinic-Haberle I, Benov LT (2015) Amphiphilic cationic Zn-porphyrins with high photodynamic antimicrobial activity. Future Microbiol 10(5):709–724CrossRef
144.
Zurück zum Zitat Johnson GA, Muthukrishnan N, Pellois J-P (2012) Photoinactivation of gram positive and gram negative bacteria with the antimicrobial peptide (KLAKLAK)2 Conjugated to the hydrophilic photosensitizer Eosin Y. Bioconjug Chem 24(1):114–123CrossRef Johnson GA, Muthukrishnan N, Pellois J-P (2012) Photoinactivation of gram positive and gram negative bacteria with the antimicrobial peptide (KLAKLAK)2 Conjugated to the hydrophilic photosensitizer Eosin Y. Bioconjug Chem 24(1):114–123CrossRef
145.
Zurück zum Zitat Zhou X, Chen Z, Wang Y, Guo Y, Tung C-H, Zhang F, Liu X (2013) Honeycomb-patterned phthalocyanine films with photo-active antibacterial activities. Chem Commun 49(90):10614–10616CrossRef Zhou X, Chen Z, Wang Y, Guo Y, Tung C-H, Zhang F, Liu X (2013) Honeycomb-patterned phthalocyanine films with photo-active antibacterial activities. Chem Commun 49(90):10614–10616CrossRef
146.
Zurück zum Zitat Liu K, Liu Y, Yao Y, Yuan H, Wang S, Wang Z, Zhang X (2013) Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew Chem Int Ed 52(32):8285–8289CrossRef Liu K, Liu Y, Yao Y, Yuan H, Wang S, Wang Z, Zhang X (2013) Supramolecular photosensitizers with enhanced antibacterial efficiency. Angew Chem Int Ed 52(32):8285–8289CrossRef
147.
Zurück zum Zitat Shrestha A, Kishen A (2012) Polycationic Chitosan-conjugated photosensitizer for antibacterial photodynamic therapy†. Photochem Photobiol 88(3):577–583CrossRef Shrestha A, Kishen A (2012) Polycationic Chitosan-conjugated photosensitizer for antibacterial photodynamic therapy†. Photochem Photobiol 88(3):577–583CrossRef
148.
Zurück zum Zitat Chong H, Nie C, Zhu C, Yang Q, Liu L, Lv F, Wang S (2011) Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. Langmuir 28(4):2091–2098CrossRef Chong H, Nie C, Zhu C, Yang Q, Liu L, Lv F, Wang S (2011) Conjugated polymer nanoparticles for light-activated anticancer and antibacterial activity with imaging capability. Langmuir 28(4):2091–2098CrossRef
149.
Zurück zum Zitat Yang K, Gitter B, Rüger R, Albrecht V, Wieland GD, Fahr A (2012) Wheat germ agglutinin modified liposomes for the photodynamic inactivation of bacteria†. Photochem Photobiol 88(3):548–556CrossRef Yang K, Gitter B, Rüger R, Albrecht V, Wieland GD, Fahr A (2012) Wheat germ agglutinin modified liposomes for the photodynamic inactivation of bacteria†. Photochem Photobiol 88(3):548–556CrossRef
150.
Zurück zum Zitat Shijie L, Shenglin Q, Lili L, Guobin Q, Yaoxin L, Zengying Q, Hao W, Chen S (2015) Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology 26(49):495602CrossRef Shijie L, Shenglin Q, Lili L, Guobin Q, Yaoxin L, Zengying Q, Hao W, Chen S (2015) Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology 26(49):495602CrossRef
151.
Zurück zum Zitat Xiong M-H, Li Y-J, Bao Y, Yang X-Z, Hu B, Wang J (2012) Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv Mater 24(46):6175–6180CrossRef Xiong M-H, Li Y-J, Bao Y, Yang X-Z, Hu B, Wang J (2012) Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv Mater 24(46):6175–6180CrossRef
152.
Zurück zum Zitat Xiong M-H, Bao Y, Yang X-Z, Wang Y-C, Sun B, Wang J (2012) Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J Am Chem Soc 134(9):4355–4362CrossRef Xiong M-H, Bao Y, Yang X-Z, Wang Y-C, Sun B, Wang J (2012) Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J Am Chem Soc 134(9):4355–4362CrossRef
153.
Zurück zum Zitat Shukla A, Fang JC, Puranam S, Hammond PT (2012) Release of vancomycin from multilayer coated absorbent gelatin sponges. J Control Release 157(1):64–71CrossRef Shukla A, Fang JC, Puranam S, Hammond PT (2012) Release of vancomycin from multilayer coated absorbent gelatin sponges. J Control Release 157(1):64–71CrossRef
154.
Zurück zum Zitat Choi SK, Myc A, Silpe JE, Sumit M, Wong PT, McCarthy K, Desai AM, Thomas TP, Kotlyar A, Holl MMB, Orr BG, Baker JR (2012) Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 7(1):214–228CrossRef Choi SK, Myc A, Silpe JE, Sumit M, Wong PT, McCarthy K, Desai AM, Thomas TP, Kotlyar A, Holl MMB, Orr BG, Baker JR (2012) Dendrimer-based multivalent vancomycin nanoplatform for targeting the drug-resistant bacterial surface. ACS Nano 7(1):214–228CrossRef
155.
Zurück zum Zitat Ren C, Wang H, Zhang X, Ding D, Wang L, Yang Z (2014) Interfacial self-assembly leads to formation of fluorescent nanoparticles for simultaneous bacterial detection and inhibition. Chem Commun 50(26):3473–3475CrossRef Ren C, Wang H, Zhang X, Ding D, Wang L, Yang Z (2014) Interfacial self-assembly leads to formation of fluorescent nanoparticles for simultaneous bacterial detection and inhibition. Chem Commun 50(26):3473–3475CrossRef
156.
Zurück zum Zitat Sémiramoth N, Meo CD, Zouhiri F, Saïd-Hassane F, Valetti S, Gorges R, Nicolas V, Poupaert JH, Chollet-Martin S, Desmaële D, Gref R, Couvreur P (2012) Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano 6(5):3820–3831CrossRef Sémiramoth N, Meo CD, Zouhiri F, Saïd-Hassane F, Valetti S, Gorges R, Nicolas V, Poupaert JH, Chollet-Martin S, Desmaële D, Gref R, Couvreur P (2012) Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano 6(5):3820–3831CrossRef
157.
Zurück zum Zitat Guchhait G, Altieri A, Gorityala B, Yang X, Findlay B, Zhanel GG, Mookherjee N, Schweizer F (2015) Amphiphilic tobramycins with immunomodulatory properties. Angew Chem Int Ed 54(21):6278–6282CrossRef Guchhait G, Altieri A, Gorityala B, Yang X, Findlay B, Zhanel GG, Mookherjee N, Schweizer F (2015) Amphiphilic tobramycins with immunomodulatory properties. Angew Chem Int Ed 54(21):6278–6282CrossRef
158.
Zurück zum Zitat Ray PC, Khan SA, Singh AK, Senapati D, Fan Z (2012) Nanomaterials for targeted detection and photothermal killing of bacteria. Chem Soc Rev 41(8):3193–3209CrossRef Ray PC, Khan SA, Singh AK, Senapati D, Fan Z (2012) Nanomaterials for targeted detection and photothermal killing of bacteria. Chem Soc Rev 41(8):3193–3209CrossRef
159.
Zurück zum Zitat Wu J, Zawistowski A, Ehrmann M, Yi T, Schmuck C (2011) Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide. J Am Chem Soc 133(25):9720–9723CrossRef Wu J, Zawistowski A, Ehrmann M, Yi T, Schmuck C (2011) Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide. J Am Chem Soc 133(25):9720–9723CrossRef
160.
Zurück zum Zitat Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133(25):9650–9653CrossRef Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133(25):9650–9653CrossRef
161.
Zurück zum Zitat Saneyoshi H, Ito Y, Abe H (2013) Long-lived luminogenic probe for detection of RNA in a crude solution of living bacterial cells. J Am Chem Soc 135(37):13632–13635CrossRef Saneyoshi H, Ito Y, Abe H (2013) Long-lived luminogenic probe for detection of RNA in a crude solution of living bacterial cells. J Am Chem Soc 135(37):13632–13635CrossRef
162.
Zurück zum Zitat Gao J, Li L, Ho PL, Mak GC, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater 18(23):3145–3148CrossRef Gao J, Li L, Ho PL, Mak GC, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater 18(23):3145–3148CrossRef
163.
Zurück zum Zitat Qi G, Li L, Yu F, Wang H (2013) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 5(21):10874–10881CrossRef Qi G, Li L, Yu F, Wang H (2013) Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces 5(21):10874–10881CrossRef
164.
Zurück zum Zitat Azzopardi EA, Ferguson EL, Thomas DW (2013) The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother 68(2):257–274CrossRef Azzopardi EA, Ferguson EL, Thomas DW (2013) The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother 68(2):257–274CrossRef
165.
Zurück zum Zitat Agard NJ, Maltby D, Wells JA (2010) Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteom 9(5):880–893CrossRef Agard NJ, Maltby D, Wells JA (2010) Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteom 9(5):880–893CrossRef
166.
Zurück zum Zitat Isakov O, Modai S, Shomron N (2011) Pathogen detection using short-RNA deep sequencing subtraction and assembly. Bioinformatics 27(15):2027–2030CrossRef Isakov O, Modai S, Shomron N (2011) Pathogen detection using short-RNA deep sequencing subtraction and assembly. Bioinformatics 27(15):2027–2030CrossRef
167.
Zurück zum Zitat Milo S, Thet NT, Liu D, Nzakizwanayo J, Jones BV, Jenkins ATA (2016) An in-situ infection detection sensor coating for urinary catheters. Biosens Bioelectron 81:166–172CrossRef Milo S, Thet NT, Liu D, Nzakizwanayo J, Jones BV, Jenkins ATA (2016) An in-situ infection detection sensor coating for urinary catheters. Biosens Bioelectron 81:166–172CrossRef
168.
Zurück zum Zitat Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S (2016) Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens Bioelectron 80:582–589CrossRef Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S (2016) Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens Bioelectron 80:582–589CrossRef
169.
Zurück zum Zitat Braiek M, Rokbani KB, Chrouda A, Mrabet B, Bakhrouf A, Maaref A, Jaffrezic-Renault N (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2(4):417–426CrossRef Braiek M, Rokbani KB, Chrouda A, Mrabet B, Bakhrouf A, Maaref A, Jaffrezic-Renault N (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors 2(4):417–426CrossRef
170.
Zurück zum Zitat Dudak FC, Boyaci İH (2014) Peptide-based surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B. Food Anal Methods 7(2):506–511CrossRef Dudak FC, Boyaci İH (2014) Peptide-based surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B. Food Anal Methods 7(2):506–511CrossRef
171.
Zurück zum Zitat Chen K, Wu L, Jiang X, Lu Z, Han H (2014) Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS. Biosens Bioelectron 62:196–200CrossRef Chen K, Wu L, Jiang X, Lu Z, Han H (2014) Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS. Biosens Bioelectron 62:196–200CrossRef
172.
Zurück zum Zitat Xiang Y, Zhang H, Jiang B, Chai Y, Yuan R (2011) Quantum dot layer-by-layer assemblies as signal amplification labels for ultrasensitive electronic detection of uropathogens. Anal Chem 83(11):4302–4306CrossRef Xiang Y, Zhang H, Jiang B, Chai Y, Yuan R (2011) Quantum dot layer-by-layer assemblies as signal amplification labels for ultrasensitive electronic detection of uropathogens. Anal Chem 83(11):4302–4306CrossRef
173.
Zurück zum Zitat Budin G, Chung HJ, Lee H, Weissleder R (2012) A magnetic gram stain for bacterial detection. Angew Chem Int Ed 51(31):7752–7755CrossRef Budin G, Chung HJ, Lee H, Weissleder R (2012) A magnetic gram stain for bacterial detection. Angew Chem Int Ed 51(31):7752–7755CrossRef
174.
Zurück zum Zitat Chung HJ, Reiner T, Budin G, Min C, Liong M, Issadore D, Lee H, Weissleder R (2011) Ubiquitous detection of gram-positive bacteria with bioorthogonal magnetofluorescent nanoparticles. ACS Nano 5(11):8834–8841CrossRef Chung HJ, Reiner T, Budin G, Min C, Liong M, Issadore D, Lee H, Weissleder R (2011) Ubiquitous detection of gram-positive bacteria with bioorthogonal magnetofluorescent nanoparticles. ACS Nano 5(11):8834–8841CrossRef
175.
Zurück zum Zitat Kinnunen P, Carey ME, Craig E, Brahmasandra SN, McNaughton BH (2014) Rapid bacterial growth and antimicrobial response using self-assembled magnetic bead sensors. Sens Actuat B Chem 190:265–269CrossRef Kinnunen P, Carey ME, Craig E, Brahmasandra SN, McNaughton BH (2014) Rapid bacterial growth and antimicrobial response using self-assembled magnetic bead sensors. Sens Actuat B Chem 190:265–269CrossRef
176.
Zurück zum Zitat Xu Y-G, Liu Z-M, Zhang B-Q, Qu M, Mo C-S, Luo J, Li S-L (2016) Development of a novel target-enriched multiplex PCR (Tem-PCR) assay for simultaneous detection of five foodborne pathogens. Food Control 64:54–59CrossRef Xu Y-G, Liu Z-M, Zhang B-Q, Qu M, Mo C-S, Luo J, Li S-L (2016) Development of a novel target-enriched multiplex PCR (Tem-PCR) assay for simultaneous detection of five foodborne pathogens. Food Control 64:54–59CrossRef
177.
Zurück zum Zitat Yang K, Jenkins DM, Su WW (2011) Rapid concentration of bacteria using submicron magnetic anion exchangers for improving PCR-based multiplex pathogen detection. J Microbiol Methods 86(1):69–77CrossRef Yang K, Jenkins DM, Su WW (2011) Rapid concentration of bacteria using submicron magnetic anion exchangers for improving PCR-based multiplex pathogen detection. J Microbiol Methods 86(1):69–77CrossRef
178.
Zurück zum Zitat Leevy WM, Gammon ST, Jiang H, Johnson JR, Maxwell DJ, Jackson EN, Marquez M, Piwnica-Worms D, Smith BD (2006) Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J Am Chem Soc 128(51):16476–16477CrossRef Leevy WM, Gammon ST, Jiang H, Johnson JR, Maxwell DJ, Jackson EN, Marquez M, Piwnica-Worms D, Smith BD (2006) Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J Am Chem Soc 128(51):16476–16477CrossRef
179.
Zurück zum Zitat van Oosten M, Schafer T, Gazendam JA, Ohlsen K, Tsompanidou E, de Goffau MC, Harmsen HJ, Crane LM, Lim E, Francis KP, Cheung L, Olive M, Ntziachristos V, van Dijl JM, van Dam GM (2013) Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun 4:2584CrossRef van Oosten M, Schafer T, Gazendam JA, Ohlsen K, Tsompanidou E, de Goffau MC, Harmsen HJ, Crane LM, Lim E, Francis KP, Cheung L, Olive M, Ntziachristos V, van Dijl JM, van Dam GM (2013) Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun 4:2584CrossRef
180.
Zurück zum Zitat Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, Van Simaeys G, Jacobs F, Goldman S (2006) Imaging infection with 18F-FDG–labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med 47(4):625–632 Dumarey N, Egrise D, Blocklet D, Stallenberg B, Remmelink M, del Marmol V, Van Simaeys G, Jacobs F, Goldman S (2006) Imaging infection with 18F-FDG–labeled leukocyte PET/CT: initial experience in 21 patients. J Nucl Med 47(4):625–632
181.
Zurück zum Zitat Clinical diagnosis of bacterial infection via FDG-PET imaging (2013) Can Chem Trans 1 (2):85–104 Clinical diagnosis of bacterial infection via FDG-PET imaging (2013) Can Chem Trans 1 (2):85–104
182.
Zurück zum Zitat Singh A, Arutyunov D, Szymanski CM, Evoy S (2012) Bacteriophage based probes for pathogen detection. Analyst 137(15):3405–3421CrossRef Singh A, Arutyunov D, Szymanski CM, Evoy S (2012) Bacteriophage based probes for pathogen detection. Analyst 137(15):3405–3421CrossRef
183.
Zurück zum Zitat Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103:4841–4845CrossRef Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103:4841–4845CrossRef
184.
Zurück zum Zitat Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA 101(42):15027–15032CrossRef Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA 101(42):15027–15032CrossRef
185.
Zurück zum Zitat Thet NT, Alves DR, Bean JE, Booth S, Nzakizwanayo J, Young AER, Jones BV, Jenkins ATA (2016) Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl Mater Interfaces 8(24):14909–14919CrossRef Thet NT, Alves DR, Bean JE, Booth S, Nzakizwanayo J, Young AER, Jones BV, Jenkins ATA (2016) Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms. ACS Appl Mater Interfaces 8(24):14909–14919CrossRef
186.
Zurück zum Zitat Zhou J, Loftus AL, Mulley G, Jenkins ATA (2010) A thin film detection/response system for pathogenic bacteria. J Am Chem Soc 132(18):6566–6570CrossRef Zhou J, Loftus AL, Mulley G, Jenkins ATA (2010) A thin film detection/response system for pathogenic bacteria. J Am Chem Soc 132(18):6566–6570CrossRef
187.
Zurück zum Zitat da Silva JSL, Oliveira MDL, de Melo CP, Andrade CAS (2014) Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. Colloids Surf B Biointerfaces 117:549–554CrossRef da Silva JSL, Oliveira MDL, de Melo CP, Andrade CAS (2014) Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. Colloids Surf B Biointerfaces 117:549–554CrossRef
188.
Zurück zum Zitat Haas S, Hain N, Raoufi M, Handschuh-Wang S, Wang T, Jiang X, Schönherr H (2015) Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromol 16(3):832–841CrossRef Haas S, Hain N, Raoufi M, Handschuh-Wang S, Wang T, Jiang X, Schönherr H (2015) Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromol 16(3):832–841CrossRef
189.
Zurück zum Zitat Tücking K-S, Grützner V, Unger RE, Schönherr H (2015) Dual enzyme-responsive capsules of hyaluronic acid-block-Poly(Lactic Acid) for sensing bacterial enzymes. Macromol Rapid Commun 36(13):1248–1254CrossRef Tücking K-S, Grützner V, Unger RE, Schönherr H (2015) Dual enzyme-responsive capsules of hyaluronic acid-block-Poly(Lactic Acid) for sensing bacterial enzymes. Macromol Rapid Commun 36(13):1248–1254CrossRef
190.
Zurück zum Zitat Mouffouk F, da Costa AMR, Martins J, Zourob M, Abu-Salah KM, Alrokayan SA (2011) Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. Biosens Bioelectron 26(8):3517–3523CrossRef Mouffouk F, da Costa AMR, Martins J, Zourob M, Abu-Salah KM, Alrokayan SA (2011) Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micelles. Biosens Bioelectron 26(8):3517–3523CrossRef
191.
Zurück zum Zitat Guo Y, Wang Y, Liu S, Yu J, Wang H, Cui M, Huang J (2015) Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157:H7 with signal amplification on a SG-PEDOT-AuNPs electrode interface. Analyst 140(2):551–559CrossRef Guo Y, Wang Y, Liu S, Yu J, Wang H, Cui M, Huang J (2015) Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157:H7 with signal amplification on a SG-PEDOT-AuNPs electrode interface. Analyst 140(2):551–559CrossRef
192.
Zurück zum Zitat Maurer EI, Comfort KK, Hussain SM, Schlager JJ, Mukhopadhyay SM (2012) Novel platform development using an assembly of carbon nanotube, nanogold and immobilized RNA capture element towards rapid selective sensing of bacteria. Sensors 12(6):8135CrossRef Maurer EI, Comfort KK, Hussain SM, Schlager JJ, Mukhopadhyay SM (2012) Novel platform development using an assembly of carbon nanotube, nanogold and immobilized RNA capture element towards rapid selective sensing of bacteria. Sensors 12(6):8135CrossRef
193.
Zurück zum Zitat Lian Y, He F, Wang H, Tong F (2015) A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of staphylococcus aureus. Biosens Bioelectron 65:314–319CrossRef Lian Y, He F, Wang H, Tong F (2015) A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of staphylococcus aureus. Biosens Bioelectron 65:314–319CrossRef
194.
Zurück zum Zitat Wan Y, Lin Z, Zhang D, Wang Y, Hou B (2011) Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens Bioelectron 26(5):1959–1964CrossRef Wan Y, Lin Z, Zhang D, Wang Y, Hou B (2011) Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens Bioelectron 26(5):1959–1964CrossRef
195.
Zurück zum Zitat Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang C-H, Chen J (2013) Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5(9):3620–3626CrossRef Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang C-H, Chen J (2013) Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5(9):3620–3626CrossRef
196.
Zurück zum Zitat Ding X, Li H, Deng L, Peng Z, Chen H, Wang D (2011) A novel homogenous detection method based on the self-assembled DNAzyme labeled DNA probes with SWNT conjugates and its application in detecting pathogen. Biosens Bioelectron 26(11):4596–4600CrossRef Ding X, Li H, Deng L, Peng Z, Chen H, Wang D (2011) A novel homogenous detection method based on the self-assembled DNAzyme labeled DNA probes with SWNT conjugates and its application in detecting pathogen. Biosens Bioelectron 26(11):4596–4600CrossRef
197.
Zurück zum Zitat Kim I, Jeong H-H, Kim Y-J, Lee N-E, K-m Huh, Lee C-S, Kim GH, Lee E (2014) A Light-up 1D supramolecular nanoprobe for silver ions based on assembly of pyrene-labeled peptide amphiphiles: cell-imaging and antimicrobial activity. J Mater Chem B 2(38):6478–6486CrossRef Kim I, Jeong H-H, Kim Y-J, Lee N-E, K-m Huh, Lee C-S, Kim GH, Lee E (2014) A Light-up 1D supramolecular nanoprobe for silver ions based on assembly of pyrene-labeled peptide amphiphiles: cell-imaging and antimicrobial activity. J Mater Chem B 2(38):6478–6486CrossRef
198.
Zurück zum Zitat Gao M, Hu Q, Feng G, Tomczak N, Liu R, Xing B, Tang BZ, Liu B (2015) A Multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells. Adv Healthcare Mater 4(5):659–663CrossRef Gao M, Hu Q, Feng G, Tomczak N, Liu R, Xing B, Tang BZ, Liu B (2015) A Multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells. Adv Healthcare Mater 4(5):659–663CrossRef
199.
Zurück zum Zitat Franzini RM, Kool ET (2011) Improved templated fluorogenic probes enhance the analysis of closely related pathogenic bacteria by microscopy and flow cytometry. Bioconjug Chem 22(9):1869–1877CrossRef Franzini RM, Kool ET (2011) Improved templated fluorogenic probes enhance the analysis of closely related pathogenic bacteria by microscopy and flow cytometry. Bioconjug Chem 22(9):1869–1877CrossRef
200.
Zurück zum Zitat Deng B, Chen J, Zhang H (2014) Assembly of multiple DNA components through target binding toward homogeneous, isothermally amplified, and specific detection of proteins. Anal Chem 86(14):7009–7016CrossRef Deng B, Chen J, Zhang H (2014) Assembly of multiple DNA components through target binding toward homogeneous, isothermally amplified, and specific detection of proteins. Anal Chem 86(14):7009–7016CrossRef
201.
Zurück zum Zitat Eker B, Yilmaz MD, Schlautmann S, Gardeniers JGE, Huskens J (2011) A supramolecular sensing platform for phosphate anions and an anthrax biomarker in a microfluidic device. Int J Mol Sci 12(11):7335CrossRef Eker B, Yilmaz MD, Schlautmann S, Gardeniers JGE, Huskens J (2011) A supramolecular sensing platform for phosphate anions and an anthrax biomarker in a microfluidic device. Int J Mol Sci 12(11):7335CrossRef
202.
Zurück zum Zitat Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, Murthy N (2011) Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 10(8):602–607CrossRef Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E, Murthy N (2011) Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 10(8):602–607CrossRef
203.
Zurück zum Zitat Panizzi P, Nahrendorf M, Figueiredo J-L, Panizzi J, Marinelli B, Iwamoto Y, Keliher E, Maddur AA, Waterman P, Kroh HK, Leuschner F, Aikawa E, Swirski FK, Pittet MJ, Hackeng TM, Fuentes-Prior P, Schneewind O, Bock PE, Weissleder R (2011) In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 17(9):1142–1146CrossRef Panizzi P, Nahrendorf M, Figueiredo J-L, Panizzi J, Marinelli B, Iwamoto Y, Keliher E, Maddur AA, Waterman P, Kroh HK, Leuschner F, Aikawa E, Swirski FK, Pittet MJ, Hackeng TM, Fuentes-Prior P, Schneewind O, Bock PE, Weissleder R (2011) In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 17(9):1142–1146CrossRef
204.
Zurück zum Zitat Zhang D, Qi GB, Zhao YX, Qiao SL, Yang C, Wang H (2015) In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv Mater 27(40):6125–6130CrossRef Zhang D, Qi GB, Zhao YX, Qiao SL, Yang C, Wang H (2015) In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv Mater 27(40):6125–6130CrossRef
Metadaten
Titel
Self-assembled Nanomaterials for Bacterial Infection Diagnosis and Therapy
verfasst von
Li-Li Li
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6913-0_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.