Skip to main content
Erschienen in:

04.07.2022

Self-Driving Vehicle Localization using Probabilistic Maps and Unscented-Kalman Filters

verfasst von: Wael Farag

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a Real-Time Monte Carlo Localization (RT_MCL) method for autonomous cars is proposed. Unlike the other localization approaches, the balanced treatment of both pose estimation accuracy and its real-time performance is the main contribution. The RT_MCL method is based on the fusion of lidar and radar measurement data for object detection, a pole-like landmarks probabilistic map, and a tailored particle filter for pose estimation. The lidar and radar are fused using the Unscented Kalman Filter (UKF) to provide pole-like static-objects pose estimations that are well suited to serve as landmarks for vehicle localization in urban environments. These pose estimations are then clustered using the Grid-Based Density-Based Spatial Clustering of Applications with Noise (GB-DBSCAN) algorithm to represent each pole landmarks in the form of a source-point model to reduce computational cost and memory requirements. A reference map that includes pole landmarks is generated off-line and extracted from a 3-D lidar to be used by a carefully designed Particle Filter (PF) for accurate ego-car localization. The particle filter is initialized by the fused GPS + IMU measurements and used an ego-car motion model to predict the states of the particles. The data association between the estimated landmarks by the UKF and that in the reference map is performed using Iterative Closest Point (ICP) algorithm. The RT_MCL is implemented using the high-performance language C++ and utilizes highly optimized math and optimization libraries for best real-time performance. Extensive simulation studies have been carried out to evaluate the performance of the RT_MCL in both longitudinal and lateral localization. The RT_MCL was able to estimate the ego-car pose with an 11-cm mean error in real-time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Farag, W.: Cloning safe driving behavior for self-driving cars using convolutional neural networks. Recent Patents Comput. Sci., Bentham Science Publishers, The Netherlands 12(2), 120–127(8) (2019) Farag, W.: Cloning safe driving behavior for self-driving cars using convolutional neural networks. Recent Patents Comput. Sci., Bentham Science Publishers, The Netherlands 12(2), 120–127(8) (2019)
2.
Zurück zum Zitat Farag, W.: Traffic signs classification by deep learning for advanced driving assistance systems. Intell. Decis. Technol., IOS Press 13(3), 215–231 (2019) Farag, W.: Traffic signs classification by deep learning for advanced driving assistance systems. Intell. Decis. Technol., IOS Press 13(3), 215–231 (2019)
3.
Zurück zum Zitat Farag, W., Saleh, Z.: Road lane-lines detection in real-time for advanced driving assistance systems. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18). Bahrain, 18-20 Nov (2018) Farag, W., Saleh, Z.: Road lane-lines detection in real-time for advanced driving assistance systems. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18). Bahrain, 18-20 Nov (2018)
4.
Zurück zum Zitat Farag, W.: A lightweight vehicle detection and tracking technique for advanced driving assistance systems. J. Intell. Fuzzy Syst., IOS Press 39(3), 2693–2710, (2020) Farag, W.: A lightweight vehicle detection and tracking technique for advanced driving assistance systems. J. Intell. Fuzzy Syst., IOS Press 39(3), 2693–2710, (2020)
5.
Zurück zum Zitat Farag, W., Saleh, Z.: An advanced vehicle detection and tracking scheme for self-driving cars. 2nd Smart Cities Symposium (SCS’19). IET Digital Library, Bahrain, 24-26 March (2019) Farag, W., Saleh, Z.: An advanced vehicle detection and tracking scheme for self-driving cars. 2nd Smart Cities Symposium (SCS’19). IET Digital Library, Bahrain, 24-26 March (2019)
6.
Zurück zum Zitat Farag, W., Saleh, Z.: An advanced road-lanes finding scheme for self-driving cars. 2nd Smart Cities Symposium (SCS'19). IET Digital Library, Bahrain, 24-26 March (2019) Farag, W., Saleh, Z.: An advanced road-lanes finding scheme for self-driving cars. 2nd Smart Cities Symposium (SCS'19). IET Digital Library, Bahrain, 24-26 March (2019)
7.
Zurück zum Zitat Farag, W.: Safe-driving cloning by deep learning for autonomous cars. Int. J. Adv. Mechatron. Syst., Inderscience Publishers 7(6), 390–397 (2019) Farag, W.: Safe-driving cloning by deep learning for autonomous cars. Int. J. Adv. Mechatron. Syst., Inderscience Publishers 7(6), 390–397 (2019)
10.
Zurück zum Zitat Modsching, M., Kramer, R., ten Hagen, K.: Field trial on GPS accuracy in a medium-size city: the influence of built-up. In: 3rd Workshop on positioning, navigation and communication, vol. 2006, pp. 209–218 (2006) Modsching, M., Kramer, R., ten Hagen, K.: Field trial on GPS accuracy in a medium-size city: the influence of built-up. In: 3rd Workshop on positioning, navigation and communication, vol. 2006, pp. 209–218 (2006)
11.
Zurück zum Zitat Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M.: University of Michigan north campus long-term vision and lidar dataset. Int. J. Robot. Res. 35(9), 1023–1035 (2015)CrossRef Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M.: University of Michigan north campus long-term vision and lidar dataset. Int. J. Robot. Res. 35(9), 1023–1035 (2015)CrossRef
12.
Zurück zum Zitat Levinson,J., Thrun, S.: Robust vehicle localization in urban environments using probabilistic maps. In: 2010 IEEE International Conference on Robotics and Automation, pp. 4372–4378, May (2010) Levinson,J., Thrun, S.: Robust vehicle localization in urban environments using probabilistic maps. In: 2010 IEEE International Conference on Robotics and Automation, pp. 4372–4378, May (2010)
13.
Zurück zum Zitat Schaefer,A., Büscher, D., Vertens, J., Luft, L., Burgard, W.: Long-term urban vehicle localization using pole landmarks extracted from 3-D lidar scans. European Conference on Mobile Robots (ECMR), Czech Republic, 4–6 Sept (2019) Schaefer,A., Büscher, D., Vertens, J., Luft, L., Burgard, W.: Long-term urban vehicle localization using pole landmarks extracted from 3-D lidar scans. European Conference on Mobile Robots (ECMR), Czech Republic, 4–6 Sept (2019)
14.
Zurück zum Zitat Kummerle,J., Sons, M., Poggenhans F., Kuehner, T., Lauer, M., Stiller, C.: Accurate and efficient self-localization on roads using basic geometric primitives. In: 2019 IEEE International Conference on Robotics and Automation, May (2019) Kummerle,J., Sons, M., Poggenhans F., Kuehner, T., Lauer, M., Stiller, C.: Accurate and efficient self-localization on roads using basic geometric primitives. In: 2019 IEEE International Conference on Robotics and Automation, May (2019)
15.
Zurück zum Zitat Miura, S., Hsu, L.T., Chen, F., Kamijo, S.: GPS error correction with pseudorange evaluation using three-dimensional maps. IEEE Trans. Intell. Transp. Syst. 16(6), 3104–3115 (2015)CrossRef Miura, S., Hsu, L.T., Chen, F., Kamijo, S.: GPS error correction with pseudorange evaluation using three-dimensional maps. IEEE Trans. Intell. Transp. Syst. 16(6), 3104–3115 (2015)CrossRef
17.
Zurück zum Zitat Jo, K., Jo, Y., Suhr, J.K., Jung, H.G., Sunwoo, M.: Precise localization of an autonomous car based on probabilistic noise models of road surface marker features using multiple cameras. IEEE Trans. Intell. Transp. Syst. 16(6), 3377–3392 (2015)CrossRef Jo, K., Jo, Y., Suhr, J.K., Jung, H.G., Sunwoo, M.: Precise localization of an autonomous car based on probabilistic noise models of road surface marker features using multiple cameras. IEEE Trans. Intell. Transp. Syst. 16(6), 3377–3392 (2015)CrossRef
19.
Zurück zum Zitat Sefati, M., Daum, M., Sondermann, B., Kreisk, K.D., Kampker, A.: Improving vehicle localization using semantic and pole-like landmarks. In: 2017 IEEE Intelligent Vehicles Symposium, pp. 13–19, June (2017) Sefati, M., Daum, M., Sondermann, B., Kreisk, K.D., Kampker, A.: Improving vehicle localization using semantic and pole-like landmarks. In: 2017 IEEE Intelligent Vehicles Symposium, pp. 13–19, June (2017)
20.
Zurück zum Zitat Farag, W.: A comprehensive real-time road-lanes tracking technique for autonomous driving. Int. J. Comput. Digit. Syst. 9(3), 349–362 (2020)CrossRef Farag, W.: A comprehensive real-time road-lanes tracking technique for autonomous driving. Int. J. Comput. Digit. Syst. 9(3), 349–362 (2020)CrossRef
21.
Zurück zum Zitat Weng, L., Yang, M., Guo, L., Wang, B., Wang, C.: Pole-based realtime localization for autonomous driving in congested urban scenarios. In: 2018 IEEE International Conference on Real-time Computing and Robotics, pp. 96–101, August (2018) Weng, L., Yang, M., Guo, L., Wang, B., Wang, C.: Pole-based realtime localization for autonomous driving in congested urban scenarios. In: 2018 IEEE International Conference on Real-time Computing and Robotics, pp. 96–101, August (2018)
22.
Zurück zum Zitat Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)MathSciNetCrossRef Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)MathSciNetCrossRef
23.
Zurück zum Zitat Suhr, J.K., Jang, J., Min, D., Jung, H.G.: Sensor fusion-based low-cost vehicle localization system for complex urban environments. IEEE Trans. Intell. Transp. Syst. 18(5) (2017) Suhr, J.K., Jang, J., Min, D., Jung, H.G.: Sensor fusion-based low-cost vehicle localization system for complex urban environments. IEEE Trans. Intell. Transp. Syst. 18(5) (2017)
24.
Zurück zum Zitat Kellner, D., Klappstein, J., Dietmayer, K.C.J.: Grid-based DBSCAN for clustering extended objects in radar data. In: 2012 IEEE Intelligent Vehicles Symposium, pp. 365–370, Alcala de Henares, Spain (2012) Kellner, D., Klappstein, J., Dietmayer, K.C.J.: Grid-based DBSCAN for clustering extended objects in radar data. In: 2012 IEEE Intelligent Vehicles Symposium, pp. 365–370, Alcala de Henares, Spain (2012)
25.
Zurück zum Zitat Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. J. Intell. Rob. Syst. 18(3), 249–275 (1997)CrossRef Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. J. Intell. Rob. Syst. 18(3), 249–275 (1997)CrossRef
26.
Zurück zum Zitat Thrun S.: Particle filters in robotics. In: Proceedings of 18th Annual Conf. On Uncertainty in AI (UAI), Edmonton (2002) Thrun S.: Particle filters in robotics. In: Proceedings of 18th Annual Conf. On Uncertainty in AI (UAI), Edmonton (2002)
27.
Zurück zum Zitat Zarchan, P., Musoff, H.: Fundamentals of Kalman filtering: a practical approach. American Institute of Aeronautics and Astronautics, Incorporated, 4th Ed., ISBN 978–1–62410–276–9 (2013) Zarchan, P., Musoff, H.: Fundamentals of Kalman filtering: a practical approach. American Institute of Aeronautics and Astronautics, Incorporated, 4th Ed., ISBN 978–1–62410–276–9 (2013)
28.
Zurück zum Zitat Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: IEEE Adaptive Sys. For Signal Processing, Comm., and Control Symposium, pp. 153–156. Alberta (2000) Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: IEEE Adaptive Sys. For Signal Processing, Comm., and Control Symposium, pp. 153–156. Alberta (2000)
29.
Zurück zum Zitat Einicke, G.A., White, L.B.: Robust extended Kalman filtering. IEEE Trans. Signal Process. 47(9), 2596–2599 (1999)CrossRefMATH Einicke, G.A., White, L.B.: Robust extended Kalman filtering. IEEE Trans. Signal Process. 47(9), 2596–2599 (1999)CrossRefMATH
30.
Zurück zum Zitat Schubert, R., Richter, E., Wanielik, G.: Comparison and evaluation of advanced motion models for vehicle tracking. In: 11th Inter. Conf. On Information Fusion, Cologne, Germany (2008) Schubert, R., Richter, E., Wanielik, G.: Comparison and evaluation of advanced motion models for vehicle tracking. In: 11th Inter. Conf. On Information Fusion, Cologne, Germany (2008)
31.
Zurück zum Zitat Farag, W.: Road-objects tracking for autonomous driving using lidar and radar fusion. J. Electr. Eng. 71(3), 138–149 (2020) Farag, W.: Road-objects tracking for autonomous driving using lidar and radar fusion. J. Electr. Eng. 71(3), 138–149 (2020)
32.
Zurück zum Zitat Farag, W.: Real-time Lidar and radar fusion for road-objects detection and tracking. Intelligent Decision Technologies (IDT). 15(2), 291–304, IOS Press, The Netherlands (2021)CrossRef Farag, W.: Real-time Lidar and radar fusion for road-objects detection and tracking. Intelligent Decision Technologies (IDT). 15(2), 291–304, IOS Press, The Netherlands (2021)CrossRef
33.
Zurück zum Zitat Sander,J., Xu, X., Ester, M., Kriegel, H.-P.: A density-based algorithm for discovering clusters in large spatial databases with noise: Proc. of the 2nd Inter. Conf. on Knowledge Discovery and Data Mining, pp. 226–231. August (1996) Sander,J., Xu, X., Ester, M., Kriegel, H.-P.: A density-based algorithm for discovering clusters in large spatial databases with noise: Proc. of the 2nd Inter. Conf. on Knowledge Discovery and Data Mining, pp. 226–231. August (1996)
37.
38.
Zurück zum Zitat Zhao,S., Huang, B.: On initialization of the Kalman filter. 6th Inter. Symposium on Adv. Control of Ind. Processes (AdCONIP), Taipei, Taiwan, May 28–31 (2017) Zhao,S., Huang, B.: On initialization of the Kalman filter. 6th Inter. Symposium on Adv. Control of Ind. Processes (AdCONIP), Taipei, Taiwan, May 28–31 (2017)
39.
Zurück zum Zitat Farag, W.: Synthesis of intelligent hybrid systems for modeling and control. PhD Thesis, University of Waterloo, Ontario (1998) Farag, W.: Synthesis of intelligent hybrid systems for modeling and control. PhD Thesis, University of Waterloo, Ontario (1998)
40.
Zurück zum Zitat Levinson, J., Montemerlo, M., Thrun, S.: Map-based precision vehicle localization in urban environments. Conference: Robotics: Science and Systems III, Georgia Institute of Technology, Atlanta, Georgia, USA, June 27–30 (2007) Levinson, J., Montemerlo, M., Thrun, S.: Map-based precision vehicle localization in urban environments. Conference: Robotics: Science and Systems III, Georgia Institute of Technology, Atlanta, Georgia, USA, June 27–30 (2007)
41.
Zurück zum Zitat Farag, W.: Complex trajectory tracking using PID control for autonomous driving. Int. J. Intell. Transp. Syst. Res. 19(4), 112–127 (2019) Farag, W.: Complex trajectory tracking using PID control for autonomous driving. Int. J. Intell. Transp. Syst. Res. 19(4), 112–127 (2019)
42.
Zurück zum Zitat Farag, W.: Complex-track following in real-time using model-based predictive control. Int. J. Intell. Transp. Syst. Res. 18(5), 356–366 (2020) Farag, W.: Complex-track following in real-time using model-based predictive control. Int. J. Intell. Transp. Syst. Res. 18(5), 356–366 (2020)
44.
Zurück zum Zitat Farag, W.A., Quintana, V.H., Lambert-Torres, G.: Neuro-fuzzy modeling of complex systems using genetic algorithms. IEEE International Conference on Neural Networks (IEEE ICNN'97) 1, pp. 444–449 (1997) Farag, W.A., Quintana, V.H., Lambert-Torres, G.: Neuro-fuzzy modeling of complex systems using genetic algorithms. IEEE International Conference on Neural Networks (IEEE ICNN'97) 1, pp. 444–449 (1997)
47.
Zurück zum Zitat Farag, W., Saleh Z.: Behavior cloning for autonomous driving using convolutional neural networks. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov (2018) Farag, W., Saleh Z.: Behavior cloning for autonomous driving using convolutional neural networks. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov (2018)
Metadaten
Titel
Self-Driving Vehicle Localization using Probabilistic Maps and Unscented-Kalman Filters
verfasst von
Wael Farag
Publikationsdatum
04.07.2022
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-022-00314-4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.