Skip to main content
Erschienen in: Applicable Algebra in Engineering, Communication and Computing 1/2022

27.04.2020 | Original Paper

Self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 4n

verfasst von: Yuan Cao, Yonglin Cao, Fang-Wei Fu, Guidong Wang

Erschienen in: Applicable Algebra in Engineering, Communication and Computing | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For any odd positive integer n, we express cyclic codes over \({\mathbb {Z}}_4\) of length 4n in a new way. Based on the expression of each cyclic code \({\mathcal {C}}\), we provide an efficient encoder and determine the type of \({\mathcal {C}}\). In particular, we give an explicit representation and enumeration for all distinct self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 4n and correct a mistake in the paper “Concatenated structure of cyclic codes over \({\mathbb {Z}}_4\) of length 4n” (Cao et al. in Appl Algebra Eng Commun Comput 10:279–302, 2016). In addition, we obtain 50 new self-dual cyclic codes over \({\mathbb {Z}}_4\) of length 28.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abualrub, T., Oehmke, R.: On the generators of \({\mathbb{Z}}_4\) cyclic codes of length \(2^e\). IEEE Trans. Inform. Theory 49, 2126–2133 (2003)MathSciNetCrossRef Abualrub, T., Oehmke, R.: On the generators of \({\mathbb{Z}}_4\) cyclic codes of length \(2^e\). IEEE Trans. Inform. Theory 49, 2126–2133 (2003)MathSciNetCrossRef
2.
Zurück zum Zitat Blackford, T.: Cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Discrete Appl. Math. 128, 27–46 (2003)MathSciNetCrossRef Blackford, T.: Cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Discrete Appl. Math. 128, 27–46 (2003)MathSciNetCrossRef
3.
Zurück zum Zitat Calderbank, A.R., Sloane, N.J.A.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)MathSciNetCrossRef Calderbank, A.R., Sloane, N.J.A.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)MathSciNetCrossRef
4.
Zurück zum Zitat Calderbank, A.R., Sloane, N.J.A.: Double circulant codes over \({\mathbb{Z}}_4\) and even unimodular lattices. J. Algebraic Combin. 6, 119–131 (1997)MathSciNetCrossRef Calderbank, A.R., Sloane, N.J.A.: Double circulant codes over \({\mathbb{Z}}_4\) and even unimodular lattices. J. Algebraic Combin. 6, 119–131 (1997)MathSciNetCrossRef
5.
Zurück zum Zitat Cao, Y., Cao, Y., Li, Q.: Concatenated structure of cyclic codes over \({\mathbb{Z}}_4\) of length \(4n\). Appl. Algebra Eng. Commun. Comput. 10, 279–302 (2016)CrossRef Cao, Y., Cao, Y., Li, Q.: Concatenated structure of cyclic codes over \({\mathbb{Z}}_4\) of length \(4n\). Appl. Algebra Eng. Commun. Comput. 10, 279–302 (2016)CrossRef
6.
Zurück zum Zitat Cao, Y., Cao, Y., Dougherty, S.T., Ling, S.: Construction and enumeration for self-dual cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Des. Codes Cryptogr. 87, 2419–2446 (2019)MathSciNetCrossRef Cao, Y., Cao, Y., Dougherty, S.T., Ling, S.: Construction and enumeration for self-dual cyclic codes over \({\mathbb{Z}}_4\) of oddly even length. Des. Codes Cryptogr. 87, 2419–2446 (2019)MathSciNetCrossRef
7.
9.
Zurück zum Zitat Cao, Y., Cao, Y.: Negacyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \) of oddly even length and their Gray images. Finite Fields Appl. 52, 67–93 (2018)MathSciNetCrossRef Cao, Y., Cao, Y.: Negacyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \) of oddly even length and their Gray images. Finite Fields Appl. 52, 67–93 (2018)MathSciNetCrossRef
10.
Zurück zum Zitat Cao, Y., Cao, Y.: Complete classification for simple root cyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \). Cryptogr. Commun. 12, 301–319 (2020)MathSciNetCrossRef Cao, Y., Cao, Y.: Complete classification for simple root cyclic codes over the local ring \({\mathbb{Z}}_4[v]/\langle v^2+2v\rangle \). Cryptogr. Commun. 12, 301–319 (2020)MathSciNetCrossRef
11.
Zurück zum Zitat Dougherty, S.T., Ling, S.: Cyclic codes over \({\mathbb{Z}}_4\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006)MathSciNetCrossRef Dougherty, S.T., Ling, S.: Cyclic codes over \({\mathbb{Z}}_4\) of even length. Des. Codes Cryptogr. 39, 127–153 (2006)MathSciNetCrossRef
12.
Zurück zum Zitat Gaborit, P., Natividad, A.M., Solé, P.: Eisenstein lattices, Galois rings and quaternary codes. Int. J. Number Theory 2, 289–303 (2006)MathSciNetCrossRef Gaborit, P., Natividad, A.M., Solé, P.: Eisenstein lattices, Galois rings and quaternary codes. Int. J. Number Theory 2, 289–303 (2006)MathSciNetCrossRef
13.
Zurück zum Zitat Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\mathbb{Z}}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MathSciNetCrossRef Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\mathbb{Z}}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MathSciNetCrossRef
14.
15.
Zurück zum Zitat Harada, M., Kitazume, M., Munemasa, A., Venkov, B.: On some self-dual codes and unimodular lattices in dimension 48. Eur. J. Combin. 26, 543–557 (2005)MathSciNetCrossRef Harada, M., Kitazume, M., Munemasa, A., Venkov, B.: On some self-dual codes and unimodular lattices in dimension 48. Eur. J. Combin. 26, 543–557 (2005)MathSciNetCrossRef
16.
Zurück zum Zitat Harada, M., Miezaki, T.: An optimal odd unimodular lattice in dimension 72. Arch. Math. 97(6), 529–533 (2011)MathSciNetCrossRef Harada, M., Miezaki, T.: An optimal odd unimodular lattice in dimension 72. Arch. Math. 97(6), 529–533 (2011)MathSciNetCrossRef
17.
Zurück zum Zitat Harada M., Solé P., Gaborit P.: Self-dual codes over \({\mathbb{Z}}_4\) and unimodular lattices: a survey. In: Algebras and Combinatorics, Hong Kong, 1997, pp. 255–275. Springer, Singapore (1999) Harada M., Solé P., Gaborit P.: Self-dual codes over \({\mathbb{Z}}_4\) and unimodular lattices: a survey. In: Algebras and Combinatorics, Hong Kong, 1997, pp. 255–275. Springer, Singapore (1999)
18.
Zurück zum Zitat Kiah, H.M., Leung, K.H., Ling, S.: A note on cyclic codes over \({{\rm GR}}(p^2, m)\) of length \(p^k\). Des. Codes Cryptogr. 63, 105–112 (2012)MathSciNetCrossRef Kiah, H.M., Leung, K.H., Ling, S.: A note on cyclic codes over \({{\rm GR}}(p^2, m)\) of length \(p^k\). Des. Codes Cryptogr. 63, 105–112 (2012)MathSciNetCrossRef
19.
Zurück zum Zitat Jitman, S., Ling, S., Sangwisut, E.: On self-dual cyclic codes of length \(p^a\) over \({{\rm GR}}(p^2, s)\). Adv. Math. Commun. 10, 255–273 (2016)MathSciNetCrossRef Jitman, S., Ling, S., Sangwisut, E.: On self-dual cyclic codes of length \(p^a\) over \({{\rm GR}}(p^2, s)\). Adv. Math. Commun. 10, 255–273 (2016)MathSciNetCrossRef
20.
Zurück zum Zitat Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \({\mathbb{Z}}_4\). IEEE Trans. Inform. Theory 42, 1594–1600 (1996)MathSciNetCrossRef Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over \({\mathbb{Z}}_4\). IEEE Trans. Inform. Theory 42, 1594–1600 (1996)MathSciNetCrossRef
21.
Zurück zum Zitat Pless, V.S., Solé, P., Qian, Z.: Cyclic self-dual \({\mathbb{Z}}_4\)-codes. Finite Fields Appl. 3, 48–69 (1997)MathSciNetCrossRef Pless, V.S., Solé, P., Qian, Z.: Cyclic self-dual \({\mathbb{Z}}_4\)-codes. Finite Fields Appl. 3, 48–69 (1997)MathSciNetCrossRef
22.
Zurück zum Zitat Shi, M., Qian, L., Sok, L., Aydin, N., Solé, P.: On constacyclic codes over \({\mathbb{Z}}_4[u]/\langle u^2-1\rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)MathSciNetCrossRef Shi, M., Qian, L., Sok, L., Aydin, N., Solé, P.: On constacyclic codes over \({\mathbb{Z}}_4[u]/\langle u^2-1\rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)MathSciNetCrossRef
23.
Zurück zum Zitat Wan, Z.-X.: Quaternary Codes. World Scientific Pub Co Inc., Singapore (1997)CrossRef Wan, Z.-X.: Quaternary Codes. World Scientific Pub Co Inc., Singapore (1997)CrossRef
24.
Zurück zum Zitat Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific Pub Co Inc., Singapore (2003)CrossRef Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific Pub Co Inc., Singapore (2003)CrossRef
Metadaten
Titel
Self-dual cyclic codes over of length 4n
verfasst von
Yuan Cao
Yonglin Cao
Fang-Wei Fu
Guidong Wang
Publikationsdatum
27.04.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing / Ausgabe 1/2022
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00424-0

Weitere Artikel der Ausgabe 1/2022

Applicable Algebra in Engineering, Communication and Computing 1/2022 Zur Ausgabe

Acknowledgment

Acknowledgment