Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Ausgabe 3/2015

Designs, Codes and Cryptography 3/2015

Self-embeddings of Hamming Steiner triple systems of small order and APN permutations

Zeitschrift:
Designs, Codes and Cryptography > Ausgabe 3/2015
Autoren:
Josep Rifà, Faina I. Solov’eva, Mercè Villanueva
Wichtige Hinweise
Communicated by G. McGuire.

Abstract

The classification, up to isomorphism, of all self-embedding monomial power permutations of Hamming Steiner triple systems of order \(n=2^m-1\) for small \(m\,(m \le 22)\), is given. As far as we know, for \(m\! \in \! \{5,7,11,13,17,19 \}\), all given self-embeddings in closed surfaces are new. Moreover, they are cyclic for all \(m\) and nonorientable at least for all \(m \le 19\). For any non prime \(m\), the nonexistence of such self-embeddings in a closed surface is proven. The rotation line spectrum for self-embeddings of Hamming Steiner triple systems in pseudosurfaces with pinch points as an invariant to distinguish APN permutations or, in general, to classify permutations, is also proposed. This invariant applied to APN monomial power permutations gives a classification which coincides with the classification of such permutations via CCZ-equivalence, at least up to \(m\le 17\).

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Designs, Codes and Cryptography 3/2015 Zur Ausgabe

Premium Partner

    Bildnachweise