Skip to main content
Erschienen in: Journal of Materials Science 7/2019

10.12.2018 | Composites

Self-healable polysiloxane/graphene nanocomposite and its application in pressure sensor

verfasst von: Liwei Zhao, Bo Jiang, Yudong Huang

Erschienen in: Journal of Materials Science | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polysiloxane is an ideal material for the preparation of wearable and flexible electronic devices. The preparation of pressure sensor using polysiloxane with both self-healing properties and excellent mechanical properties remains a key challenge. This work reports a self-healable pressure sensor based on polysiloxane network cross-linked by dynamic Diels–Alder bonds. The self-healable polysiloxane underwent a solid–liquid–solid transformation during a self-healing process, which has been confirmed by rheology. Depending on the amount of the linear reactive polydimethylsiloxane, mechanical performance and stretchability of the self-healable polysiloxane were tunable. By incorporating graphene nanosheets into polysiloxane elastomer, we fabricated a self-healable nanocomposite with significantly improved tensile stress and excellent electromechanical property. The tensile stress of nanocomposite containing 35 wt% graphene was 1.09 MPa that was improved by more than 1700% compared to that of the elastomer, indicating a significant improvement of the tensile stress with stretchability. The prepared self-healable pressure sensor exhibits a high sensitivity of 0.765 kPa−1 and a gauge factor of 4.87, demonstrating a promising potential use in the pressure sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362–5368CrossRef Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134:5362–5368CrossRef
2.
Zurück zum Zitat Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980CrossRef Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980CrossRef
3.
Zurück zum Zitat White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797CrossRef White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797CrossRef
5.
Zurück zum Zitat White SR, Moore JS, Sottos NR, Krull BP, Santa Cruz WA, Gergely RCR (2014) Restoration of large damage volumes in polymers. Science 344:620–623CrossRef White SR, Moore JS, Sottos NR, Krull BP, Santa Cruz WA, Gergely RCR (2014) Restoration of large damage volumes in polymers. Science 344:620–623CrossRef
6.
Zurück zum Zitat Yoshida S, Ejima H, Yoshie N (2017) Tough elastomers with superior self-recoverability induced by bioinspired multiphase design. Adv Funct Mater 27:1701670CrossRef Yoshida S, Ejima H, Yoshie N (2017) Tough elastomers with superior self-recoverability induced by bioinspired multiphase design. Adv Funct Mater 27:1701670CrossRef
8.
Zurück zum Zitat Madsen FB, Yu L, Skov AL (2016) Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Lett 5:1196–1200CrossRef Madsen FB, Yu L, Skov AL (2016) Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Lett 5:1196–1200CrossRef
9.
Zurück zum Zitat Cuthbert TJ, Jadischke JJ, de Bruyn JR, Ragogna PJ, Gillies ER (2017) Self-healing polyphosphonium ionic networks. Macromolecules 50:5253–5260CrossRef Cuthbert TJ, Jadischke JJ, de Bruyn JR, Ragogna PJ, Gillies ER (2017) Self-healing polyphosphonium ionic networks. Macromolecules 50:5253–5260CrossRef
10.
Zurück zum Zitat Mozhdehi D, Ayala S, Cromwell OR, Guan Z (2014) Self-healing multiphase polymers via dynamic metal-ligand interactions. J Am Chem Soc 136:16128–16131CrossRef Mozhdehi D, Ayala S, Cromwell OR, Guan Z (2014) Self-healing multiphase polymers via dynamic metal-ligand interactions. J Am Chem Soc 136:16128–16131CrossRef
11.
Zurück zum Zitat Hussain I, Sayed SM, Liu S, Yao F, Oderinde O, Fu G (2018) Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions. Eur Polym J 100:219–227CrossRef Hussain I, Sayed SM, Liu S, Yao F, Oderinde O, Fu G (2018) Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions. Eur Polym J 100:219–227CrossRef
12.
Zurück zum Zitat McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713CrossRef McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713CrossRef
13.
Zurück zum Zitat Jia Y-G, Zhu XX (2015) Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater 27:387–393CrossRef Jia Y-G, Zhu XX (2015) Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater 27:387–393CrossRef
14.
Zurück zum Zitat Lei ZQ, Xiang HP, Yuan YJ, Rong MZ, Zhang MQ (2014) Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem Mater 26:2038–2046CrossRef Lei ZQ, Xiang HP, Yuan YJ, Rong MZ, Zhang MQ (2014) Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds. Chem Mater 26:2038–2046CrossRef
16.
Zurück zum Zitat Rao YL, Chortos A, Pfattner R, Lissel F, Chiu YC, Feig V, Xu J, Kurosawa T, Gu X, Wang C, He M, Chung JW, Bao Z (2016) Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J Am Chem Soc 138:6020–6027CrossRef Rao YL, Chortos A, Pfattner R, Lissel F, Chiu YC, Feig V, Xu J, Kurosawa T, Gu X, Wang C, He M, Chung JW, Bao Z (2016) Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J Am Chem Soc 138:6020–6027CrossRef
17.
Zurück zum Zitat Xing L, Li Q, Zhang G, Zhang X, Liu F, Liu L, Huang Y, Wang Q (2016) Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities. Adv Funct Mater 26:3524–3531CrossRef Xing L, Li Q, Zhang G, Zhang X, Liu F, Liu L, Huang Y, Wang Q (2016) Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities. Adv Funct Mater 26:3524–3531CrossRef
18.
Zurück zum Zitat Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C (2015) A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun 6:10310CrossRef Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C (2015) A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun 6:10310CrossRef
19.
Zurück zum Zitat Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y (2017) Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11:2066–2074CrossRef Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y (2017) Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11:2066–2074CrossRef
20.
Zurück zum Zitat Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5:1042–1048CrossRef Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5:1042–1048CrossRef
21.
Zurück zum Zitat Xu W, Huang L-B, Hao J (2017) Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy 40:399–407CrossRef Xu W, Huang L-B, Hao J (2017) Fully self-healing and shape-tailorable triboelectric nanogenerators based on healable polymer and magnetic-assisted electrode. Nano Energy 40:399–407CrossRef
22.
Zurück zum Zitat Jin H, Huynh TP, Haick H (2016) Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: toward disease prevention via wearable devices. Nano Lett 16:4194–4202CrossRef Jin H, Huynh TP, Haick H (2016) Self-healable sensors based nanoparticles for detecting physiological markers via skin and breath: toward disease prevention via wearable devices. Nano Lett 16:4194–4202CrossRef
23.
Zurück zum Zitat Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832CrossRef Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832CrossRef
24.
Zurück zum Zitat Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan CW, Tang Y, Weng LT, Yuan H (2017) A Mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13:1601916CrossRef Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan CW, Tang Y, Weng LT, Yuan H (2017) A Mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13:1601916CrossRef
25.
Zurück zum Zitat Lei Z, Wang Q, Sun S, Zhu W, Wu P (2017) A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater 29:1700321CrossRef Lei Z, Wang Q, Sun S, Zhu W, Wu P (2017) A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater 29:1700321CrossRef
26.
Zurück zum Zitat Trung TQ, Ramasundaram S, Hwang BU, Lee NE (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28:502–509CrossRef Trung TQ, Ramasundaram S, Hwang BU, Lee NE (2016) An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv Mater 28:502–509CrossRef
27.
Zurück zum Zitat Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira MS, Möbius ME, Young RJ, Coleman JN (2016) Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354:1257–1260CrossRef Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira MS, Möbius ME, Young RJ, Coleman JN (2016) Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354:1257–1260CrossRef
28.
Zurück zum Zitat Jeong SH, Zhang S, Hjort K, Hilborn J, Wu Z (2016) PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv Mater 28:5830–5836CrossRef Jeong SH, Zhang S, Hjort K, Hilborn J, Wu Z (2016) PDMS-based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Adv Mater 28:5830–5836CrossRef
29.
Zurück zum Zitat Yu B, Kang SY, Akthakul A, Ramadurai N, Pilkenton M, Patel A, Nashat A, Anderson DG, Sakamoto FH, Gilchrest BA, Anderson RR, Langer R (2016) An elastic second skin. Nat Mater 15:911–918CrossRef Yu B, Kang SY, Akthakul A, Ramadurai N, Pilkenton M, Patel A, Nashat A, Anderson DG, Sakamoto FH, Gilchrest BA, Anderson RR, Langer R (2016) An elastic second skin. Nat Mater 15:911–918CrossRef
30.
Zurück zum Zitat Li CH, Wang C, Keplinger C, Zuo JL, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You XZ, Bao Z (2016) A highly stretchable autonomous self-healing elastomer. Nat Chem 8:618–624CrossRef Li CH, Wang C, Keplinger C, Zuo JL, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You XZ, Bao Z (2016) A highly stretchable autonomous self-healing elastomer. Nat Chem 8:618–624CrossRef
31.
Zurück zum Zitat Zhao J, Xu R, Luo G, Wu J, Xia H (2016) A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer. J Mater Chem B 4:982–989CrossRef Zhao J, Xu R, Luo G, Wu J, Xia H (2016) A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer. J Mater Chem B 4:982–989CrossRef
32.
Zurück zum Zitat Imai Y, Itoh H, Naka K, Chujo Y (2000) Thermally reversible IPN organic − inorganic polymer hybrids utilizing the diels − alder reaction. Macromolecules 33:4343–4346CrossRef Imai Y, Itoh H, Naka K, Chujo Y (2000) Thermally reversible IPN organic − inorganic polymer hybrids utilizing the diels − alder reaction. Macromolecules 33:4343–4346CrossRef
33.
Zurück zum Zitat Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702CrossRef Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702CrossRef
34.
Zurück zum Zitat Fu G, Yuan L, Liang G, Gu A (2016) Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers. J Mater Chem A 4:4232–4241CrossRef Fu G, Yuan L, Liang G, Gu A (2016) Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers. J Mater Chem A 4:4232–4241CrossRef
35.
Zurück zum Zitat Tian Q, Yuan YC, Rong MZ, Zhang MQ (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–1296CrossRef Tian Q, Yuan YC, Rong MZ, Zhang MQ (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–1296CrossRef
36.
Zurück zum Zitat Gong C, Liang J, Hu W, Niu X, Ma S, Hahn HT, Pei Q (2013) A healable, semitransparent silver nanowire-polymer composite conductor. Adv Mater 25:4186–4191CrossRef Gong C, Liang J, Hu W, Niu X, Ma S, Hahn HT, Pei Q (2013) A healable, semitransparent silver nanowire-polymer composite conductor. Adv Mater 25:4186–4191CrossRef
38.
Zurück zum Zitat Rueda MM, Auscher M-C, Fulchiron R, Périé T, Martin G, Sonntag P, Cassagnau P (2017) Rheology and applications of highly filled polymers: a review of current understanding. Prog Polym Sci 66:22–53CrossRef Rueda MM, Auscher M-C, Fulchiron R, Périé T, Martin G, Sonntag P, Cassagnau P (2017) Rheology and applications of highly filled polymers: a review of current understanding. Prog Polym Sci 66:22–53CrossRef
39.
Zurück zum Zitat Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
40.
Zurück zum Zitat Kim S, Do I, Drzal LT (2009) Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites. Polym Compos 31:755–761CrossRef Kim S, Do I, Drzal LT (2009) Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites. Polym Compos 31:755–761CrossRef
41.
Zurück zum Zitat Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci, Part B: Polym Phys 48:850–858CrossRef Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci, Part B: Polym Phys 48:850–858CrossRef
Metadaten
Titel
Self-healable polysiloxane/graphene nanocomposite and its application in pressure sensor
verfasst von
Liwei Zhao
Bo Jiang
Yudong Huang
Publikationsdatum
10.12.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03233-6

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Science 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.