Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Journal of Electronic Testing 5/2022

28.09.2022

Self Healing Controllers to Mitigate SEU in the Control Path of FPGA Based System: A Complete Intrinsic Evolutionary Approach

verfasst von: S Deepanjali, Noor Mahammad Sk

Erschienen in: Journal of Electronic Testing | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Single event upsets (SEU) are the transient errors that occur during the operation of the circuit. High radiation in the space environment and its invasion of the nanoelectronics can result in a bit-flip in the combinational circuits and may cause a stuck-at fault in the sequential circuit. Faults are unacceptable for any application, especially SEU in the control path, which is crucial and imperative since it can lead to functional or even mission failure. As a result, this paper proposes a bio-inspired technique based on a modified heuristic-guided genetic algorithm to mitigate error at the Finite State Machine (FSM), which is the controller’s behavior model. The proposed architecture performs an optimized functional level evolution of the FSM intrinsically on ProAsic3e FPGA boards without the help of System-on-Chip (SoC). Due to this, the delay caused by extrinsic and hybrid evolution has been reduced. The proposed heuristic-guided genetic algorithm recovers the fault in the control circuit with less convergence time when compared to the standard genetic algorithm. The resource utilization of the proposed evolvable hardware system has reduced costs compared to traditional functional evolution.
Literatur
3.
Zurück zum Zitat Bergmann NW, Sutton PR (1998) A high-performance computing module for a low earth orbit satellite using reconfigurable logic. In: Proc. International Workshop on Field Programmable Logic and Applications, Springer, pp 416–420 Bergmann NW, Sutton PR (1998) A high-performance computing module for a low earth orbit satellite using reconfigurable logic. In: Proc. International Workshop on Field Programmable Logic and Applications, Springer, pp 416–420
4.
Zurück zum Zitat Bouhali M, Shamani F, Dahmane ZE, Belaidi A, Nurmi J (2017) FPGA applications in unmanned aerial vehicles-a review. In: Proc. International Symposium on Applied Reconfigurable Computing, Springer, pp 217–228 Bouhali M, Shamani F, Dahmane ZE, Belaidi A, Nurmi J (2017) FPGA applications in unmanned aerial vehicles-a review. In: Proc. International Symposium on Applied Reconfigurable Computing, Springer, pp 217–228
5.
Zurück zum Zitat Carmichael C, Fuller E, Blain P, Caffrey M (1999) SEU mitigation techniques for virtex FPGAs in space applications. In: Proceeding of the Military and Aerospace Programmable Logic Devices International Conference (MAPLD), p C2 Carmichael C, Fuller E, Blain P, Caffrey M (1999) SEU mitigation techniques for virtex FPGAs in space applications. In: Proceeding of the Military and Aerospace Programmable Logic Devices International Conference (MAPLD), p C2
6.
Zurück zum Zitat Das S, Tokunaga C, Pant S, Ma WH, Kalaiselvan S, Lai K, Bull DM, Blaauw DT (2008) Razorii: In situ error detection and correction for PVT and SER tolerance. IEEE J Solid-State Circuits 44(1):32–48 CrossRef Das S, Tokunaga C, Pant S, Ma WH, Kalaiselvan S, Lai K, Bull DM, Blaauw DT (2008) Razorii: In situ error detection and correction for PVT and SER tolerance. IEEE J Solid-State Circuits 44(1):32–48 CrossRef
7.
Zurück zum Zitat El-Maleh AH, Al-Qahtani AS (2014) A finite state machine based fault tolerance technique for sequential circuits. Microelectron Reliab 54(3):654–661 CrossRef El-Maleh AH, Al-Qahtani AS (2014) A finite state machine based fault tolerance technique for sequential circuits. Microelectron Reliab 54(3):654–661 CrossRef
8.
Zurück zum Zitat Garnica O, Glette K, Torresen J (2018) Comparing three online evolvable hardware implementations of a classification system. Genet Program Evolvable Mach 19(1):211–234 CrossRef Garnica O, Glette K, Torresen J (2018) Comparing three online evolvable hardware implementations of a classification system. Genet Program Evolvable Mach 19(1):211–234 CrossRef
9.
10.
Zurück zum Zitat Keymeulen D, Zebulum RS, Jin Y, Stoica A (2000) Fault-tolerant evolvable hardware using field-programmable transistor arrays. IEEE Trans Reliab 49(3):305–316 CrossRef Keymeulen D, Zebulum RS, Jin Y, Stoica A (2000) Fault-tolerant evolvable hardware using field-programmable transistor arrays. IEEE Trans Reliab 49(3):305–316 CrossRef
11.
Zurück zum Zitat Koza JR, Bennett FH, Andre D, Keane MA, Dunlap F (1997) Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Trans Evol Comput 1(2):109–128 CrossRef Koza JR, Bennett FH, Andre D, Keane MA, Dunlap F (1997) Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Trans Evol Comput 1(2):109–128 CrossRef
12.
Zurück zum Zitat Kumar U, Umashankar B (2007) Improved Hamming code for error detection and correction. In: Proc/ 2nd International Symposium on Wireless Pervasive Computing, IEEE Kumar U, Umashankar B (2007) Improved Hamming code for error detection and correction. In: Proc/ 2nd International Symposium on Wireless Pervasive Computing, IEEE
13.
Zurück zum Zitat Langeheine J, Becker J, Folling S, Meier K, Schemmel J (2001) A CMOS FPGA chip for intrinsic hardware evolution of analog electronic circuits. In: Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001, IEEE, pp 172–175 Langeheine J, Becker J, Folling S, Meier K, Schemmel J (2001) A CMOS FPGA chip for intrinsic hardware evolution of analog electronic circuits. In: Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001, IEEE, pp 172–175
14.
Zurück zum Zitat Lohn J, Larchev G, DeMara R (2003a) A genetic representation for evolutionary fault recovery in virtex FPGAs. In: Tyrrell AM, Haddow PC, Torresen J (eds) Evolvable Systems: From Biology to Hardware, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 47–56 Lohn J, Larchev G, DeMara R (2003a) A genetic representation for evolutionary fault recovery in virtex FPGAs. In: Tyrrell AM, Haddow PC, Torresen J (eds) Evolvable Systems: From Biology to Hardware, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 47–56
15.
Zurück zum Zitat Lohn J, Larchev G, DeMara R (2003b) A genetic representation for evolutionary fault recovery in virtex FPGAs. In: Proc. International Conference on Evolvable Systems, Springer, pp 47–56 Lohn J, Larchev G, DeMara R (2003b) A genetic representation for evolutionary fault recovery in virtex FPGAs. In: Proc. International Conference on Evolvable Systems, Springer, pp 47–56
16.
Zurück zum Zitat Ma X, Sun H, Xu E, Cui S, Yin B, Faied M (2020) FSM for robot target search and retrieval under semi-constructed environment. In: Proc. IEEE International Conference on Mechatronics and Automation (ICMA), pp 296–301 Ma X, Sun H, Xu E, Cui S, Yin B, Faied M (2020) FSM for robot target search and retrieval under semi-constructed environment. In: Proc. IEEE International Conference on Mechatronics and Automation (ICMA), pp 296–301
17.
Zurück zum Zitat Miller JF (1999) An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 2, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, GECCO’99, p 1135–1142 Miller JF (1999) An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 2, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, GECCO’99, p 1135–1142
18.
Zurück zum Zitat Ortega-Sánchez C, Tyrrell A (1998) Muxtree revisited: Embryonics as a reconfiguration strategy in fault-tolerant processor arrays. In: Sipper M, Mange D, Pérez-Uribe A (eds) Evolvable Systems: From Biology to Hardware. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 206–217 CrossRef Ortega-Sánchez C, Tyrrell A (1998) Muxtree revisited: Embryonics as a reconfiguration strategy in fault-tolerant processor arrays. In: Sipper M, Mange D, Pérez-Uribe A (eds) Evolvable Systems: From Biology to Hardware. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 206–217 CrossRef
19.
Zurück zum Zitat Pratt B, Caffrey M, Carroll JF, Graham P, Morgan K, Wirthlin M (2008) Fine-grain SEU mitigation for FPGAs using partial TMR. IEEE Trans Nucl Sci 55(4):2274–2280 CrossRef Pratt B, Caffrey M, Carroll JF, Graham P, Morgan K, Wirthlin M (2008) Fine-grain SEU mitigation for FPGAs using partial TMR. IEEE Trans Nucl Sci 55(4):2274–2280 CrossRef
21.
Zurück zum Zitat Rochet R, Leveugle R, Saucier G (1993) Analysis and comparison of fault tolerant FSM architecture based on SEC codes. In: Proceedings of IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, pp 9–16 Rochet R, Leveugle R, Saucier G (1993) Analysis and comparison of fault tolerant FSM architecture based on SEC codes. In: Proceedings of IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, pp 9–16
23.
Zurück zum Zitat Sekanina L (2003) Virtual reconfigurable circuits for real-world applications of evolvable hardware. In: Proc. International Conference on Evolvable Systems, Springer, pp 186–197 Sekanina L (2003) Virtual reconfigurable circuits for real-world applications of evolvable hardware. In: Proc. International Conference on Evolvable Systems, Springer, pp 186–197
24.
Zurück zum Zitat Sekanina L, Drábek V (2000) The concept of pseudo evolvable hardware. IFAC Proceedings Volumes 33(1):117–122 CrossRef Sekanina L, Drábek V (2000) The concept of pseudo evolvable hardware. IFAC Proceedings Volumes 33(1):117–122 CrossRef
25.
Zurück zum Zitat Silva GNP, de Oliveira Duarte R (2018) Towards evolvable hardware and genetic algorithm operators to fail safe systems achievement. In: Proc. IEEE 19th Latin-American Test Symposium (LATS), pp 1–4 Silva GNP, de Oliveira Duarte R (2018) Towards evolvable hardware and genetic algorithm operators to fail safe systems achievement. In: Proc. IEEE 19th Latin-American Test Symposium (LATS), pp 1–4
26.
Zurück zum Zitat Silva GNP, Duarte RO (2018) Towards evolvable hardware and genetic algorithm operators to fail safe systems achievement. In: Proc. IEEE 19th Latin-American Test Symposium (LATS), pp 1–4 Silva GNP, Duarte RO (2018) Towards evolvable hardware and genetic algorithm operators to fail safe systems achievement. In: Proc. IEEE 19th Latin-American Test Symposium (LATS), pp 1–4
27.
Zurück zum Zitat Skorobogatov S, Woods C (2012) Breakthrough silicon scanning discovers backdoor in military chip. In: Prouff E, Schaumont P (eds) Cryptographic Hardware and Embedded Systems - CHES 2012. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 23–40 CrossRef Skorobogatov S, Woods C (2012) Breakthrough silicon scanning discovers backdoor in military chip. In: Prouff E, Schaumont P (eds) Cryptographic Hardware and Embedded Systems - CHES 2012. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 23–40 CrossRef
28.
Zurück zum Zitat Srivastava AK, Gupta A, Chaturvedi S, Rastogi V (2014) Design and simulation of virtual reconfigurable circuit for a fault tolerant system. In: Proc. International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014) pp 1–4 Srivastava AK, Gupta A, Chaturvedi S, Rastogi V (2014) Design and simulation of virtual reconfigurable circuit for a fault tolerant system. In: Proc. International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014) pp 1–4
29.
Zurück zum Zitat Stomeo E, Kalganova T, Lambert C (2006) Generalized disjunction decomposition for the evolution of programmable logic array structures. In: Proc. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06), IEEE, pp 179–185 Stomeo E, Kalganova T, Lambert C (2006) Generalized disjunction decomposition for the evolution of programmable logic array structures. In: Proc. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06), IEEE, pp 179–185
30.
Zurück zum Zitat Suhas S, Malhotra G, Rajini VH (2021) HsClone genetic algorithm implementation on a combinational circuit. IETE J Res pp 1–9 Suhas S, Malhotra G, Rajini VH (2021) HsClone genetic algorithm implementation on a combinational circuit. IETE J Res pp 1–9
31.
Zurück zum Zitat Thompson A (1995) Evolving fault tolerant systems. In: Proc. First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, IET, pp 524–529 Thompson A (1995) Evolving fault tolerant systems. In: Proc. First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, IET, pp 524–529
32.
Zurück zum Zitat Thompson A, Harvey I, Husbands P (1996) Unconstrained evolution and hard consequences. In: Towards evolvable hardware, Springer, pp 136–165 Thompson A, Harvey I, Husbands P (1996) Unconstrained evolution and hard consequences. In: Towards evolvable hardware, Springer, pp 136–165
33.
Zurück zum Zitat Thompson A, Layzell P, Zebulum RS (1999) Explorations in design space: Unconventional electronics design through artificial evolution. IEEE Trans Evol Comput 3(3):167–196 CrossRef Thompson A, Layzell P, Zebulum RS (1999) Explorations in design space: Unconventional electronics design through artificial evolution. IEEE Trans Evol Comput 3(3):167–196 CrossRef
34.
Zurück zum Zitat Tufte G, Haddow PC (2000) Evolving an adaptive digital filter. In: Proc. Second NASA/DoD Workshop on Evolvable Hardware, IEEE, pp 143–150 Tufte G, Haddow PC (2000) Evolving an adaptive digital filter. In: Proc. Second NASA/DoD Workshop on Evolvable Hardware, IEEE, pp 143–150
35.
Zurück zum Zitat Tyrrell AM, Hollingworth G, Smith SL (2001) Evolutionary strategies and intrinsic fault tolerance. In: Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001, IEEE, pp 98–106 Tyrrell AM, Hollingworth G, Smith SL (2001) Evolutionary strategies and intrinsic fault tolerance. In: Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001, IEEE, pp 98–106
36.
Zurück zum Zitat Vasantha Rani SPJ, Ranjith NA (2020) Performance analysis of intrinsic embedded evolvable hardware using memetic and genetic algorithms. Int J Bio Inspir Com 15:43–51 Vasantha Rani SPJ, Ranjith NA (2020) Performance analysis of intrinsic embedded evolvable hardware using memetic and genetic algorithms. Int J Bio Inspir Com 15:43–51
39.
Zurück zum Zitat Wang J, Liu J (2017) Fault-tolerant strategy for real-time system based on evolvable hardware. J Circuits Syst Comput 26(07):1750111 CrossRef Wang J, Liu J (2017) Fault-tolerant strategy for real-time system based on evolvable hardware. J Circuits Syst Comput 26(07):1750111 CrossRef
40.
Zurück zum Zitat Zhang J, yan Cai J, Meng Y, Meng T (2020) A novel self-adaptive circuit design technique based on evolvable hardware. Int J Autom Comput pp 1–8 Zhang J, yan Cai J, Meng Y, Meng T (2020) A novel self-adaptive circuit design technique based on evolvable hardware. Int J Autom Comput pp 1–8
41.
Zurück zum Zitat Zhang W, Li Y, He G (2007) Intrinsic evolution of frequency splitter with a new analog EHW platform. In: Proc. International Symposium on Intelligence Computation and Applications, Springer, pp 611–620 Zhang W, Li Y, He G (2007) Intrinsic evolution of frequency splitter with a new analog EHW platform. In: Proc. International Symposium on Intelligence Computation and Applications, Springer, pp 611–620
42.
Zurück zum Zitat Zhu P, Yao R, Du J (2017) Design of self-repairing control circuit for brushless DC motor based on evolvable hardware. In: Proc. NASA/ESA Conference on Adaptive Hardware and Systems (AHS), IEEE, pp 214–220 Zhu P, Yao R, Du J (2017) Design of self-repairing control circuit for brushless DC motor based on evolvable hardware. In: Proc. NASA/ESA Conference on Adaptive Hardware and Systems (AHS), IEEE, pp 214–220
Metadaten
Titel
Self Healing Controllers to Mitigate SEU in the Control Path of FPGA Based System: A Complete Intrinsic Evolutionary Approach
verfasst von
S Deepanjali
Noor Mahammad Sk
Publikationsdatum
28.09.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Testing / Ausgabe 5/2022
Print ISSN: 0923-8174
Elektronische ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-022-06027-6

Weitere Artikel der Ausgabe 5/2022

Journal of Electronic Testing 5/2022 Zur Ausgabe

EditorialNotes

Editorial