Skip to main content
Erschienen in: Journal of Materials Science 17/2021

03.03.2021 | Chemical routes to materials

Self-healing polymeric ionic liquid hydrogels with high mechanical strength and ionic conductivity

verfasst von: Xiaoling He, Xiaoqian Sun, Hongyan Meng, Shiyu Deng, Tingting He, Hongjun Zang, Dongsheng Wei

Erschienen in: Journal of Materials Science | Ausgabe 17/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The poor mechanical properties of self-healing hydrogels limited their applications in the fields of biomedicine and industry. Here, a series of self-healing polymeric ionic liquid (PIL) hydrogels with high mechanical strength and electrical conductivity were prepared through hydrophobic association. Hydrophilic monomer vinyl ionic liquids (VILs) based on choline and amino acids, acrylamide (AAm) and hydrophobic monomers stearyl methacrylate (C18) were copolymerized in a micellar solution of sodium dodecyl sulfate (SDS); meanwhile, bacterial cellulose was introduced to enhance the mechanical strength of hydrogels. The resultant hydrogels exhibited excellent mechanical strength (5.8 MPa), extensive elongation at break (4250%) and outstanding self-healing efficiency (85%) without any external intervention. Even after healing, the tensile strength of most hydrogels could reach 2.5–3.9 MPa. At the same time, the incorporation of ILs endowed hydrogels with good electrical conductivity (a maximum of 1.258 S/m). These excellent properties predicted the potential application of the obtained PIL hydrogels in the fields of biomedicine and industry.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fantner GE, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, Turner P, Gutsmann T, Morse DE, Hansma H, Hansma PK (2006) Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. Biophys J 90:1411–1418CrossRef Fantner GE, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, Turner P, Gutsmann T, Morse DE, Hansma H, Hansma PK (2006) Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. Biophys J 90:1411–1418CrossRef
2.
Zurück zum Zitat Araya-Hermosilla R, Lima GMR, Raffa P, Fortunato G, Pucci A, Moreno-Villoslada I, Broekhuis AA, Picchioni F (2016) Intrinsic self-healing thermoset through covalent and hydrogen bonding interactions. Eur Polym J 81:186–197CrossRef Araya-Hermosilla R, Lima GMR, Raffa P, Fortunato G, Pucci A, Moreno-Villoslada I, Broekhuis AA, Picchioni F (2016) Intrinsic self-healing thermoset through covalent and hydrogen bonding interactions. Eur Polym J 81:186–197CrossRef
3.
Zurück zum Zitat Hao X, Liu H, Xie Y, Fang C, Yang H (2013) Thermal-responsive self-healing hydrogel based on hydrophobically modified chitosan and vesicle. Colloid Polym Sci 291:1749–1758CrossRef Hao X, Liu H, Xie Y, Fang C, Yang H (2013) Thermal-responsive self-healing hydrogel based on hydrophobically modified chitosan and vesicle. Colloid Polym Sci 291:1749–1758CrossRef
4.
Zurück zum Zitat Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362CrossRef Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362CrossRef
5.
Zurück zum Zitat Appel EA, Biedermann F, Rauwald U, Jones ST, Zayed JM, Scherman OA (2010) Supramolecular cross-Linked networks via host-guest complexation with cucurbit[8]uril. J Am Chem Soc 132:14251–14260CrossRef Appel EA, Biedermann F, Rauwald U, Jones ST, Zayed JM, Scherman OA (2010) Supramolecular cross-Linked networks via host-guest complexation with cucurbit[8]uril. J Am Chem Soc 132:14251–14260CrossRef
6.
Zurück zum Zitat Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Rapid Commun 32:1253–1258CrossRef Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Rapid Commun 32:1253–1258CrossRef
7.
Zurück zum Zitat Froimowicz P, Klinger D, Landfester K (2011) Photoreactive nanoparticles as nanometric building blocks for the generation of self-healing hydrogel thin films. Chem Eur J 17:12465–12475CrossRef Froimowicz P, Klinger D, Landfester K (2011) Photoreactive nanoparticles as nanometric building blocks for the generation of self-healing hydrogel thin films. Chem Eur J 17:12465–12475CrossRef
8.
Zurück zum Zitat Shao CY, Chang HL, Wang M, Xu F, Yang J (2017) High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl Mater Interfaces 9:28305–28318CrossRef Shao CY, Chang HL, Wang M, Xu F, Yang J (2017) High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl Mater Interfaces 9:28305–28318CrossRef
9.
Zurück zum Zitat Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Money DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRef Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Money DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRef
10.
Zurück zum Zitat Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRef Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRef
11.
Zurück zum Zitat Tuncaboylu DC, Argun A, Sahin M, Sari M, Okay O (2012) Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53:5513–5522CrossRef Tuncaboylu DC, Argun A, Sahin M, Sari M, Okay O (2012) Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53:5513–5522CrossRef
12.
Zurück zum Zitat Tuncaboylu DC, Sahin M, Argun A, Oppermann W, Okay O (2012) Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45:1991–2000CrossRef Tuncaboylu DC, Sahin M, Argun A, Oppermann W, Okay O (2012) Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45:1991–2000CrossRef
13.
Zurück zum Zitat Gulyuz U, Okay O (2013) Self-healing polyacrylic acid hydrogels. Soft Matter 43:10287–10293CrossRef Gulyuz U, Okay O (2013) Self-healing polyacrylic acid hydrogels. Soft Matter 43:10287–10293CrossRef
14.
Zurück zum Zitat Akay G, Hassan-Raeisi A, Tuncaboylu DC, Orakdogen N, Abdurrahmanoglu S, Oppermann W, Okay O (2013) Self-healing hydrogels formed in catanionic surfactant solutions. Soft Matter 7:2254–2261CrossRef Akay G, Hassan-Raeisi A, Tuncaboylu DC, Orakdogen N, Abdurrahmanoglu S, Oppermann W, Okay O (2013) Self-healing hydrogels formed in catanionic surfactant solutions. Soft Matter 7:2254–2261CrossRef
15.
Zurück zum Zitat Gulyuz U, Okay O (2015) Self-healing poly(N-isopropylacrylamide) hydrogels. Eur Polym J 72:12–22CrossRef Gulyuz U, Okay O (2015) Self-healing poly(N-isopropylacrylamide) hydrogels. Eur Polym J 72:12–22CrossRef
16.
Zurück zum Zitat Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47:6889–6899CrossRef Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47:6889–6899CrossRef
17.
Zurück zum Zitat Zhao JS, Zhang C, Zou D, Liu XK, Cai LX, Li XY, Shi MX (2019) A structured design for highly stretchable electronic skin. Adv Mater Technol 10:1900492CrossRef Zhao JS, Zhang C, Zou D, Liu XK, Cai LX, Li XY, Shi MX (2019) A structured design for highly stretchable electronic skin. Adv Mater Technol 10:1900492CrossRef
18.
Zurück zum Zitat Wei Y, Zeng Q, Hu Q (2018) Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosens Bioelectron 99:136–141CrossRef Wei Y, Zeng Q, Hu Q (2018) Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosens Bioelectron 99:136–141CrossRef
19.
Zurück zum Zitat Shi Y, Wang M, Ma C, Wang Y, Li X, Yu G (2015) A conductive self-healing hybrid gel enabled by metal ligand supramolecule and nanostructured conductive polymer. Nano Lett 15:6276–6281CrossRef Shi Y, Wang M, Ma C, Wang Y, Li X, Yu G (2015) A conductive self-healing hybrid gel enabled by metal ligand supramolecule and nanostructured conductive polymer. Nano Lett 15:6276–6281CrossRef
20.
Zurück zum Zitat Lim C, Shin Y, Jung J (2019) Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater 3:031502CrossRef Lim C, Shin Y, Jung J (2019) Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics. APL Mater 3:031502CrossRef
21.
Zurück zum Zitat Dev A, Mohanbhai SJ, Kushwaha AC (2020) Kappa-carrageenan-C- phycocyanin based smart injectable hydrogels for accelerated wound recovery and real-time monitoring. Acta Biomater 109:121–131CrossRef Dev A, Mohanbhai SJ, Kushwaha AC (2020) Kappa-carrageenan-C- phycocyanin based smart injectable hydrogels for accelerated wound recovery and real-time monitoring. Acta Biomater 109:121–131CrossRef
22.
Zurück zum Zitat Yang WX, Shao BW, Liu TY, Zhang YY, Huang R, Chen F, Fu Q (2018) Robust and mechanically and electrically self-healing hydrogel for efficient. ACS Appl Mater Inter 10:8245–8257CrossRef Yang WX, Shao BW, Liu TY, Zhang YY, Huang R, Chen F, Fu Q (2018) Robust and mechanically and electrically self-healing hydrogel for efficient. ACS Appl Mater Inter 10:8245–8257CrossRef
23.
Zurück zum Zitat Wang Y, Maurel G, Couty M, Detcheverry F, Merabia S (2019) Implicit medium model for fractal aggregate polymer nanocomposites: linear viscoelastic properties. Macromolecules 5:2021–2032CrossRef Wang Y, Maurel G, Couty M, Detcheverry F, Merabia S (2019) Implicit medium model for fractal aggregate polymer nanocomposites: linear viscoelastic properties. Macromolecules 5:2021–2032CrossRef
24.
Zurück zum Zitat Gunduz G, Kiziltas EE, Kiziltas A, Gencer A, Aydemir D, Asik N (2019) Production of bacterial cellulose fibers in the presence of effective microorganism. J Nat Fibers 16:567–575CrossRef Gunduz G, Kiziltas EE, Kiziltas A, Gencer A, Aydemir D, Asik N (2019) Production of bacterial cellulose fibers in the presence of effective microorganism. J Nat Fibers 16:567–575CrossRef
25.
Zurück zum Zitat Chen P, Cho SY, Jin HJ (2010) Modification and applications of bacterial celluloses in polymer science. Macromol Res 18:309–320CrossRef Chen P, Cho SY, Jin HJ (2010) Modification and applications of bacterial celluloses in polymer science. Macromol Res 18:309–320CrossRef
26.
Zurück zum Zitat Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 12:1847–1861CrossRef Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 12:1847–1861CrossRef
27.
Zurück zum Zitat Meziane R, Bonnet JP, Courty M, Djellab K, Armand M (2011) Single-ion polymer electrolytes based on adelocalized polyanion for lithium batteries. Electrichim Acta 57:14–19CrossRef Meziane R, Bonnet JP, Courty M, Djellab K, Armand M (2011) Single-ion polymer electrolytes based on adelocalized polyanion for lithium batteries. Electrichim Acta 57:14–19CrossRef
28.
Zurück zum Zitat Sugimura R, Qiao K, Tomida D, Yokoyama C (2007) Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation. Catal Commun 5:770–772CrossRef Sugimura R, Qiao K, Tomida D, Yokoyama C (2007) Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation. Catal Commun 5:770–772CrossRef
29.
Zurück zum Zitat Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504CrossRef Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504CrossRef
30.
Zurück zum Zitat Tang HD, Tang JB, Ding SJ (2005) Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci Pol Chem 43:1432–1443CrossRef Tang HD, Tang JB, Ding SJ (2005) Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci Pol Chem 43:1432–1443CrossRef
31.
Zurück zum Zitat Ohno H, Fukumoto K (2007) Amino acid ionic liquids. Accounts Chem Res 11:1122–1129CrossRef Ohno H, Fukumoto K (2007) Amino acid ionic liquids. Accounts Chem Res 11:1122–1129CrossRef
32.
Zurück zum Zitat Qian WJ, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159CrossRef Qian WJ, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159CrossRef
33.
Zurück zum Zitat Chen H, Elabd YA (2009) Polymerized ionic liquids: solution properties and electrospinning. Macromolecules 42:3368–3373CrossRef Chen H, Elabd YA (2009) Polymerized ionic liquids: solution properties and electrospinning. Macromolecules 42:3368–3373CrossRef
34.
Zurück zum Zitat Bandomir J, Schulz A, Taguchi S, Schmitt L, Ohno H, Sternberg K, Schmitz KP, Kragl U (2014) Synthesis and characterization of polymerized ionic liquids: mechanical and thermal properties of a novel type of hydrogels. Macromol Chem Phys 215:716–724CrossRef Bandomir J, Schulz A, Taguchi S, Schmitt L, Ohno H, Sternberg K, Schmitz KP, Kragl U (2014) Synthesis and characterization of polymerized ionic liquids: mechanical and thermal properties of a novel type of hydrogels. Macromol Chem Phys 215:716–724CrossRef
35.
Zurück zum Zitat Men Y, Schlaad H, Voelkel A, Yuan J (2014) Thermoresponsive polymerized gemini dicationic ionic liquid. Polym Chem 5:3719–3724CrossRef Men Y, Schlaad H, Voelkel A, Yuan J (2014) Thermoresponsive polymerized gemini dicationic ionic liquid. Polym Chem 5:3719–3724CrossRef
36.
Zurück zum Zitat Li SL, Gao Y, Jiang HC, Duan LJ, Gao GH (2018) Tough, sticky and remoldable hydrophobic association hydrogel regulated by polysaccharide and sodium dodecyl sulfate as emulsifiers. Carbohyd Polym 201:591–598CrossRef Li SL, Gao Y, Jiang HC, Duan LJ, Gao GH (2018) Tough, sticky and remoldable hydrophobic association hydrogel regulated by polysaccharide and sodium dodecyl sulfate as emulsifiers. Carbohyd Polym 201:591–598CrossRef
37.
Zurück zum Zitat Zhang Q, Wu M, Hu X (2020) A novel double-network, self-healing hydrogel based on hydrogen bonding and hydrophobic effect. Macromol Chem Phys 3:1900320CrossRef Zhang Q, Wu M, Hu X (2020) A novel double-network, self-healing hydrogel based on hydrogen bonding and hydrophobic effect. Macromol Chem Phys 3:1900320CrossRef
38.
Zurück zum Zitat Wan J, Tang F, Wang Y, Lu QP, Liu SQ, Li LD (2020) Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor. ACS Appl Mater Interfaces 1:1558–1566 Wan J, Tang F, Wang Y, Lu QP, Liu SQ, Li LD (2020) Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor. ACS Appl Mater Interfaces 1:1558–1566
39.
Zurück zum Zitat Wen J, Zhang X, Pan M (2020) A robust, tough and multifunctional polyurethane/tannic acid hydrogel fabricated by physical-chemical dual crosslinking. Polymers 1:239CrossRef Wen J, Zhang X, Pan M (2020) A robust, tough and multifunctional polyurethane/tannic acid hydrogel fabricated by physical-chemical dual crosslinking. Polymers 1:239CrossRef
40.
Zurück zum Zitat Wei D, Yang J, Zhu L, Chen F, Tang Z, Qin G, Chen Q (2018) Semicrystalline hydrophobically associated hydrogels with integrated high performances. ACS Appl Mater Interfaces 10:2946–2956CrossRef Wei D, Yang J, Zhu L, Chen F, Tang Z, Qin G, Chen Q (2018) Semicrystalline hydrophobically associated hydrogels with integrated high performances. ACS Appl Mater Interfaces 10:2946–2956CrossRef
41.
Zurück zum Zitat Zhang B, Gao Z, Gao G, Zhao W, Li J, Ren X (2018) Highly mechanical and fatigue-resistant double network hydrogels by dual physically hydrophobic association and ionic crosslinking. Macromol Mater Eng 303:1800072CrossRef Zhang B, Gao Z, Gao G, Zhao W, Li J, Ren X (2018) Highly mechanical and fatigue-resistant double network hydrogels by dual physically hydrophobic association and ionic crosslinking. Macromol Mater Eng 303:1800072CrossRef
42.
Zurück zum Zitat Xia S, Jia F, Gao GH (2019) A flexible, adhesive and self-healable hydrogel -based wearable strain sensor for human motion and physiological signal monitoring. J Mater Chem B 7(30):4638–4648CrossRef Xia S, Jia F, Gao GH (2019) A flexible, adhesive and self-healable hydrogel -based wearable strain sensor for human motion and physiological signal monitoring. J Mater Chem B 7(30):4638–4648CrossRef
43.
Zurück zum Zitat Ye L, Lv Q, Sun XY, Liang YZ, Fang PW, Yuan XY, Li M, Zhang XZ, Shang XF, Liang HY (2020) Fully physically cross-linked double network hydrogels with strong mechanical properties, good recovery and self-healing properties. Soft Matter 16(7):1840–1849CrossRef Ye L, Lv Q, Sun XY, Liang YZ, Fang PW, Yuan XY, Li M, Zhang XZ, Shang XF, Liang HY (2020) Fully physically cross-linked double network hydrogels with strong mechanical properties, good recovery and self-healing properties. Soft Matter 16(7):1840–1849CrossRef
44.
Zurück zum Zitat Pan JZ, Jin Y, Lai SQ, Shi LJ, Fan WH, Shen YC (2019) An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking. Chem Eng J 370:1228–1238CrossRef Pan JZ, Jin Y, Lai SQ, Shi LJ, Fan WH, Shen YC (2019) An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking. Chem Eng J 370:1228–1238CrossRef
45.
Zurück zum Zitat Ying Y, Urban MW (2018) Self-Healing of polymers via supramolecular chemistry. Adv Mater Interfaces 5(17):1800384CrossRef Ying Y, Urban MW (2018) Self-Healing of polymers via supramolecular chemistry. Adv Mater Interfaces 5(17):1800384CrossRef
46.
Zurück zum Zitat Chen H, Hao BB, Ge PH, Chen SJ (2020) Highly stretchable, self-healing, and 3D printing prefabricatable hydrophobic association hydrogels with the assistance of electrostatic interaction. Polym Chem 11(29):4741–4748CrossRef Chen H, Hao BB, Ge PH, Chen SJ (2020) Highly stretchable, self-healing, and 3D printing prefabricatable hydrophobic association hydrogels with the assistance of electrostatic interaction. Polym Chem 11(29):4741–4748CrossRef
47.
Zurück zum Zitat Liang XX, Ding HY, Wang Q, Sun GX (2019) Tough physical hydrogels reinforced by hydrophobic association with remarkable mechanical property, rapid stimuli-responsiveness and fast self-recovery capability. Eur Polym J 120:109278CrossRef Liang XX, Ding HY, Wang Q, Sun GX (2019) Tough physical hydrogels reinforced by hydrophobic association with remarkable mechanical property, rapid stimuli-responsiveness and fast self-recovery capability. Eur Polym J 120:109278CrossRef
48.
Zurück zum Zitat Sohrabi M, Yekta BE, Rezaie HR, Naimi-Jamal MR (2020) Rheology, injectability, and bioactivity of bioactive glass containing chitosan/gelatin nano pastes. Polym Sci 41:e49240 Sohrabi M, Yekta BE, Rezaie HR, Naimi-Jamal MR (2020) Rheology, injectability, and bioactivity of bioactive glass containing chitosan/gelatin nano pastes. Polym Sci 41:e49240
49.
Zurück zum Zitat Chen YY, Lu KY, Song YH, Han JQ, Yue YY, Biswas SK, Wu QL, Xiao HN (2019) A skin-inspired stretchable, self-healing and electro-conductive hydrogel with a synergistic triple network for wearable strain sensors applied in human-motion detection. Nanomaterials 12:1737CrossRef Chen YY, Lu KY, Song YH, Han JQ, Yue YY, Biswas SK, Wu QL, Xiao HN (2019) A skin-inspired stretchable, self-healing and electro-conductive hydrogel with a synergistic triple network for wearable strain sensors applied in human-motion detection. Nanomaterials 12:1737CrossRef
50.
Zurück zum Zitat Dai XY, Zhang YY, Gao LN, Bai T, Wang W, Cui YL, Liu WG (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 23:3566–3571CrossRef Dai XY, Zhang YY, Gao LN, Bai T, Wang W, Cui YL, Liu WG (2015) A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv Mater 23:3566–3571CrossRef
51.
Zurück zum Zitat Vilela C, Sousa N, Pinto RJB, Silvestre AJD, Figueiredo FML, Freire CSR (2017) Exploiting poly(ionic liquids) and nanocellulose for the development of bio-based anion-exchange membranes. Biomass Bioenerg 100:116–125CrossRef Vilela C, Sousa N, Pinto RJB, Silvestre AJD, Figueiredo FML, Freire CSR (2017) Exploiting poly(ionic liquids) and nanocellulose for the development of bio-based anion-exchange membranes. Biomass Bioenerg 100:116–125CrossRef
52.
Zurück zum Zitat Zhang HT, Wu XJ, Qin ZH, Sun X, Zhang H, Yu QY, Yao MM, He SS, Dong XR, Yao FL, Li JJ (2020) Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors. Cellulose 27:9975–9989CrossRef Zhang HT, Wu XJ, Qin ZH, Sun X, Zhang H, Yu QY, Yao MM, He SS, Dong XR, Yao FL, Li JJ (2020) Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors. Cellulose 27:9975–9989CrossRef
Metadaten
Titel
Self-healing polymeric ionic liquid hydrogels with high mechanical strength and ionic conductivity
verfasst von
Xiaoling He
Xiaoqian Sun
Hongyan Meng
Shiyu Deng
Tingting He
Hongjun Zang
Dongsheng Wei
Publikationsdatum
03.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05930-1

Weitere Artikel der Ausgabe 17/2021

Journal of Materials Science 17/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.