Skip to main content

2020 | OriginalPaper | Buchkapitel

3. Self-responsive Nanomaterials for Flexible Supercapacitors

verfasst von : Daolan Liu, Yueyu Tong, Lei Wen, Ji Liang

Erschienen in: Responsive Nanomaterials for Sustainable Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The worldwide demand for green and renewable energy resources as well as the development of electronic devices has greatly boosted the improvement of energy storage systems. As one of the major types of energy storage devices, supercapacitors, with ultrahigh power densities, long-term cycling lives, and rapid charge and discharge capabilities, have been extensively investigated at the current stage, especially for those flexible or wearable electronic devices, which could be integrated into a smart system. In this chapter, the basic structures, the energy storage mechanisms, the categorization, and the characteristics of supercapacitors are comprehensively discussed. This chapter mainly focuses on different major components of flexible supercapacitors, ranging from the flexible electrode structure, the flexible substrates, and the improved electrolyte, to the construction of self-responsive flexible devices. Meanwhile, the emerging flexible integrated systems with these devices have also been illustrated, such as the energy sensor integrated systems and the energy collection-storage-sensing systems. Furthermore, the future trend of flexible supercapacitors based on future demands will be lastly discussed, focusing on the feasible and efficient strategies for designing novel and high-performance supercapacitors in future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Nowotny, J. Dodson, S. Fiechter, T.M. Gür, B. Kennedy, W. Macyk, T. Bak, W. Sigmund, M. Yamawaki, K.A. Rahman, Towards global sustainability: education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 81, 2541–2551 (2018)CrossRef J. Nowotny, J. Dodson, S. Fiechter, T.M. Gür, B. Kennedy, W. Macyk, T. Bak, W. Sigmund, M. Yamawaki, K.A. Rahman, Towards global sustainability: education on environmentally clean energy technologies. Renew. Sustain. Energy Rev. 81, 2541–2551 (2018)CrossRef
2.
Zurück zum Zitat X. Hong, J. Mei, L. Wen, Y. Tong, A.J. Vasileff, L. Wang, J. Liang, Z. Sun, S.X. Dou, Nonlithium metal-sulfur batteries: steps toward a leap. Adv. Mater. 31(5), 1802822 (2019)CrossRef X. Hong, J. Mei, L. Wen, Y. Tong, A.J. Vasileff, L. Wang, J. Liang, Z. Sun, S.X. Dou, Nonlithium metal-sulfur batteries: steps toward a leap. Adv. Mater. 31(5), 1802822 (2019)CrossRef
3.
Zurück zum Zitat D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batter. Supercaps. 2(9), 743–765 (2019)CrossRef D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batter. Supercaps. 2(9), 743–765 (2019)CrossRef
4.
Zurück zum Zitat S.-L. Li, Q. Xu, Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 6(6), 1656–1683 (2013)CrossRef S.-L. Li, Q. Xu, Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 6(6), 1656–1683 (2013)CrossRef
5.
Zurück zum Zitat K. Chen, D. Xue, Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 4(20), 7522–7537 (2016)CrossRef K. Chen, D. Xue, Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 4(20), 7522–7537 (2016)CrossRef
6.
Zurück zum Zitat P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience and Technology, pp. 320–329 P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience and Technology, pp. 320–329
7.
Zurück zum Zitat L. Wang, Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang, S.X. Dou, Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 14, 22–48 (2018)CrossRef L. Wang, Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang, S.X. Dou, Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 14, 22–48 (2018)CrossRef
8.
Zurück zum Zitat T. Yang, J. Liang, I. Sultana, M.M. Rahman, M.J. Monteiro, Y. Chen, Z. Shao, S.R.P. Silva, J. Liu, Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 6(18), 8280–8288 (2018)CrossRef T. Yang, J. Liang, I. Sultana, M.M. Rahman, M.J. Monteiro, Y. Chen, Z. Shao, S.R.P. Silva, J. Liu, Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. J. Mater. Chem. A 6(18), 8280–8288 (2018)CrossRef
9.
Zurück zum Zitat L. Wen, J. Chen, J. Liang, L. Feng, H.M. Cheng, Flexible batteries ahead. Natl. Sci. Rev. 4(1), 20–23 (2016)CrossRef L. Wen, J. Chen, J. Liang, L. Feng, H.M. Cheng, Flexible batteries ahead. Natl. Sci. Rev. 4(1), 20–23 (2016)CrossRef
10.
Zurück zum Zitat L. Wen, J. Liang, J. Chen, Z.-Y. Chu, H.-M. Cheng, F. Li, Smart materials and design toward safe and durable lithium ion batteries. Small Methods 3(11), 1900323 (2019)CrossRef L. Wen, J. Liang, J. Chen, Z.-Y. Chu, H.-M. Cheng, F. Li, Smart materials and design toward safe and durable lithium ion batteries. Small Methods 3(11), 1900323 (2019)CrossRef
11.
Zurück zum Zitat A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138(18), 5731–5744 (2016)CrossRef A.C. Forse, C. Merlet, J.M. Griffin, C.P. Grey, New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138(18), 5731–5744 (2016)CrossRef
12.
Zurück zum Zitat K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776–10787 (2014)CrossRef K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776–10787 (2014)CrossRef
13.
Zurück zum Zitat P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors. Energy Convers. Manag. 51(12), 2901–2912 (2010)CrossRef P. Sharma, T.S. Bhatti, A review on electrochemical double-layer capacitors. Energy Convers. Manag. 51(12), 2901–2912 (2010)CrossRef
14.
Zurück zum Zitat O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6), 1303–1310 (2005)CrossRef O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43(6), 1303–1310 (2005)CrossRef
15.
Zurück zum Zitat A. García-Gómez, G. Moreno-Fernández, B. Lobato, T.A. Centeno, Constant capacitance in nanopores of carbon monoliths. Phys. Chem. Chem. Phys. 17(24), 15687–15690 (2015)CrossRef A. García-Gómez, G. Moreno-Fernández, B. Lobato, T.A. Centeno, Constant capacitance in nanopores of carbon monoliths. Phys. Chem. Chem. Phys. 17(24), 15687–15690 (2015)CrossRef
16.
Zurück zum Zitat Y. Tong, J. Liang, H.K. Liu, S.X. Dou, Energy storage in Oceania. Energy Storage Mater. 20, 176–187 (2019) Y. Tong, J. Liang, H.K. Liu, S.X. Dou, Energy storage in Oceania. Energy Storage Mater. 20, 176–187 (2019)
17.
Zurück zum Zitat X. Peng, L. Peng, C. Wu, Y. Xie, Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43(10), 3303–3323 (2014)CrossRef X. Peng, L. Peng, C. Wu, Y. Xie, Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43(10), 3303–3323 (2014)CrossRef
18.
Zurück zum Zitat V.D. Nithya, N. Sabari Arul, Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 4(28), 10767–10778 (2016)CrossRef V.D. Nithya, N. Sabari Arul, Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 4(28), 10767–10778 (2016)CrossRef
19.
Zurück zum Zitat Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu, F. Han, D. Han, L. Niu, Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018)CrossRef Z. Song, W. Li, Y. Bao, W. Wang, Z. Liu, F. Han, D. Han, L. Niu, Bioinspired microstructured pressure sensor based on a janus graphene film for monitoring vital signs and cardiovascular assessment. Adv. Electron. Mater. 4(11), 1800252 (2018)CrossRef
20.
Zurück zum Zitat Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)CrossRef Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics. Adv. Mater. 19(15), 1897–1916 (2007)CrossRef
21.
Zurück zum Zitat X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z.L. Wang, Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015)CrossRef X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, Z.L. Wang, Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015)CrossRef
22.
Zurück zum Zitat W. Guo, X. Yan, F. Hou, L. Wen, Y. Dai, D. Yang, X. Jiang, J. Liu, J. Liang, S.X. Dou, Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 152, 888–897 (2019)CrossRef W. Guo, X. Yan, F. Hou, L. Wen, Y. Dai, D. Yang, X. Jiang, J. Liu, J. Liang, S.X. Dou, Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 152, 888–897 (2019)CrossRef
23.
Zurück zum Zitat J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9), 5019–5026 (2010)CrossRef J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9), 5019–5026 (2010)CrossRef
24.
Zurück zum Zitat J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, Y. Zhang, Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 58, 92–98 (2013)CrossRef J. Zhao, Y. Su, Z. Yang, L. Wei, Y. Wang, Y. Zhang, Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon 58, 92–98 (2013)CrossRef
25.
Zurück zum Zitat Y. Qiao, C.M. Li, S.-J. Bao, Q.-L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170(1), 79–84 (2007)CrossRef Y. Qiao, C.M. Li, S.-J. Bao, Q.-L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170(1), 79–84 (2007)CrossRef
26.
Zurück zum Zitat H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24(30), 4197–4202 (2012)CrossRef H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24(30), 4197–4202 (2012)CrossRef
27.
Zurück zum Zitat J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001)CrossRef J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101(1), 109–116 (2001)CrossRef
28.
Zurück zum Zitat K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)CrossRef K.H. An, W.S. Kim, Y.S. Park, J.-M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)CrossRef
29.
Zurück zum Zitat K. Jurewicz, K. Babeł, R. Pietrzak, S. Delpeux, H. Wachowska, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. Carbon 44(12), 2368–2375 (2006)CrossRef K. Jurewicz, K. Babeł, R. Pietrzak, S. Delpeux, H. Wachowska, Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation. Carbon 44(12), 2368–2375 (2006)CrossRef
30.
Zurück zum Zitat T. Zhang, S. Han, W. Guo, F. Hou, J. Liu, X. Yan, S. Chen, J. Liang, Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries. SM&T 20, e00096 (2019) T. Zhang, S. Han, W. Guo, F. Hou, J. Liu, X. Yan, S. Chen, J. Liang, Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries. SM&T 20, e00096 (2019)
31.
Zurück zum Zitat C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)CrossRef C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)CrossRef
32.
Zurück zum Zitat J. Feng, L. Dong, X. Li, D. Li, P. Lu, F. Hou, J. Liang, S.X. Dou, Hierarchically stacked reduced graphene oxide/carbon nanotubes for as high performance anode for sodium-ion batteries. Electrochim. Acta 302, 65–70 (2019)CrossRef J. Feng, L. Dong, X. Li, D. Li, P. Lu, F. Hou, J. Liang, S.X. Dou, Hierarchically stacked reduced graphene oxide/carbon nanotubes for as high performance anode for sodium-ion batteries. Electrochim. Acta 302, 65–70 (2019)CrossRef
33.
Zurück zum Zitat C. Zhang, J. Li, E. Liu, C. He, C. Shi, X. Du, R.H. Hauge, N. Zhao, Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 50(10), 3513–3521 (2012)CrossRef C. Zhang, J. Li, E. Liu, C. He, C. Shi, X. Du, R.H. Hauge, N. Zhao, Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 50(10), 3513–3521 (2012)CrossRef
34.
Zurück zum Zitat Z.-H. Huang, Y. Song, D.-Y. Feng, Z. Sun, X. Sun, X.-X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12(4), 3557–3567 (2018)CrossRef Z.-H. Huang, Y. Song, D.-Y. Feng, Z. Sun, X. Sun, X.-X. Liu, High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12(4), 3557–3567 (2018)CrossRef
35.
Zurück zum Zitat T. Liu, W.G. Pell, B.E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim. Acta 42(23), 3541–3552 (1997)CrossRef T. Liu, W.G. Pell, B.E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes. Electrochim. Acta 42(23), 3541–3552 (1997)CrossRef
36.
Zurück zum Zitat L. Cao, F. Xu, Y.-Y. Liang, H.-L. Li, Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater. 16(20), 1853–1857 (2004)CrossRef L. Cao, F. Xu, Y.-Y. Liang, H.-L. Li, Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater. 16(20), 1853–1857 (2004)CrossRef
37.
Zurück zum Zitat Y. Fu, J. Song, Y. Zhu, C. Cao, High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J. Power Sources 262, 344–348 (2014)CrossRef Y. Fu, J. Song, Y. Zhu, C. Cao, High-performance supercapacitor electrode based on amorphous mesoporous Ni(OH)2 nanoboxes. J. Power Sources 262, 344–348 (2014)CrossRef
38.
Zurück zum Zitat Z. Yang, C.-Y. Chen, H.-T. Chang, Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 196(18), 7874–7877 (2011)CrossRef Z. Yang, C.-Y. Chen, H.-T. Chang, Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 196(18), 7874–7877 (2011)CrossRef
39.
Zurück zum Zitat J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14(2), 831–838 (2014)CrossRef J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14(2), 831–838 (2014)CrossRef
40.
Zurück zum Zitat C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, B.K. Tay, H. Huang, H. Zhang, W. Mai, H.J. Fan, All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27(31), 4566–4571 (2015)CrossRef C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, S. Chen, B.K. Tay, H. Huang, H. Zhang, W. Mai, H.J. Fan, All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27(31), 4566–4571 (2015)CrossRef
41.
Zurück zum Zitat X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, H.J. Fan, Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ. Sci. 8(5), 1559–1568 (2015)CrossRef X. Xia, Y. Zhang, D. Chao, Q. Xiong, Z. Fan, X. Tong, J. Tu, H. Zhang, H.J. Fan, Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy Environ. Sci. 8(5), 1559–1568 (2015)CrossRef
42.
Zurück zum Zitat Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)CrossRef Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)CrossRef
43.
Zurück zum Zitat X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, S. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 42, 144–168 (2020)CrossRef X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, S. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 42, 144–168 (2020)CrossRef
44.
Zurück zum Zitat G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang, F. Wei, Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 4(9), 870–881 (2011)CrossRef G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang, F. Wei, Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res. 4(9), 870–881 (2011)CrossRef
45.
Zurück zum Zitat M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J. Electrochem. Soc. 148(8), A910–A914 (2001)CrossRef M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshiba, H. Hara, M.S. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. J. Electrochem. Soc. 148(8), A910–A914 (2001)CrossRef
46.
Zurück zum Zitat J. Lloyd-Hughes, T.-I. Jeon, A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012)CrossRef J. Lloyd-Hughes, T.-I. Jeon, A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012)CrossRef
47.
Zurück zum Zitat B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43(15), 5092–5101 (2008)CrossRef B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43(15), 5092–5101 (2008)CrossRef
48.
Zurück zum Zitat I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(1), 73 (2010)CrossRef I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(1), 73 (2010)CrossRef
49.
Zurück zum Zitat Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24(41), 5610–5616 (2012)CrossRef Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, J. Chen, Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 24(41), 5610–5616 (2012)CrossRef
50.
Zurück zum Zitat Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem. Eur. J. 21(1), 80–85 (2015)CrossRef Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem. Eur. J. 21(1), 80–85 (2015)CrossRef
51.
Zurück zum Zitat S. Wu, G. Chen, N.Y. Kim, K. Ni, W. Zeng, Y. Zhao, Z. Tao, H. Ji, Z. Lee, Y. Zhu, Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance. Small 12(17), 2376–2384 (2016)CrossRef S. Wu, G. Chen, N.Y. Kim, K. Ni, W. Zeng, Y. Zhao, Z. Tao, H. Ji, Z. Lee, Y. Zhu, Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance. Small 12(17), 2376–2384 (2016)CrossRef
52.
Zurück zum Zitat H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654 (2010)CrossRef H. Pan, J. Li, Y. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5(3), 654 (2010)CrossRef
53.
Zurück zum Zitat Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22(6), 1272–1278 (2012)CrossRef Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22(6), 1272–1278 (2012)CrossRef
54.
Zurück zum Zitat Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 48(5), 575–580 (2003)CrossRef Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim. Acta 48(5), 575–580 (2003)CrossRef
55.
Zurück zum Zitat J.H. Park, J.M. Ko, O. Ok Park, Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors. J. Electrochem. Soc. 150(7), A864–A867 (2003)CrossRef J.H. Park, J.M. Ko, O. Ok Park, Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors. J. Electrochem. Soc. 150(7), A864–A867 (2003)CrossRef
56.
Zurück zum Zitat X.-W. Wang, H.-P. Guo, J. Liang, J.-F. Zhang, B. Zhang, J.-Z. Wang, W.-B. Luo, H.-K. Liu, S.-X. Dou, An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries. Adv. Funct. Mater. 28(26), 1801016 (2018)CrossRef X.-W. Wang, H.-P. Guo, J. Liang, J.-F. Zhang, B. Zhang, J.-Z. Wang, W.-B. Luo, H.-K. Liu, S.-X. Dou, An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries. Adv. Funct. Mater. 28(26), 1801016 (2018)CrossRef
57.
Zurück zum Zitat U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16), 6999–7021 (2015)CrossRef U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors. Nanoscale 7(16), 6999–7021 (2015)CrossRef
58.
Zurück zum Zitat J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 5(20), 9443–9464 (2017)CrossRef J. Sun, C. Wu, X. Sun, H. Hu, C. Zhi, L. Hou, C. Yuan, Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. J. Mater. Chem. A 5(20), 9443–9464 (2017)CrossRef
59.
Zurück zum Zitat X. Rui, H. Tan, Q. Yan, Nanostructured metal sulfides for energy storage. Nanoscale 6(17), 9889–9924 (2014)CrossRef X. Rui, H. Tan, Q. Yan, Nanostructured metal sulfides for energy storage. Nanoscale 6(17), 9889–9924 (2014)CrossRef
60.
Zurück zum Zitat Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015)CrossRef Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 44(19), 6684–6696 (2015)CrossRef
61.
Zurück zum Zitat C. Zhang, T.M. Higgins, S.-H. Park, S.E. O’Brien, D. Long, J.N. Coleman, V. Nicolosi, Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28, 495–505 (2016)CrossRef C. Zhang, T.M. Higgins, S.-H. Park, S.E. O’Brien, D. Long, J.N. Coleman, V. Nicolosi, Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 28, 495–505 (2016)CrossRef
62.
Zurück zum Zitat N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte. J. Energy Chem. 25(3), 463–471 (2016)CrossRef N.R. Chodankar, D.P. Dubal, G.S. Gund, C.D. Lokhande, A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte. J. Energy Chem. 25(3), 463–471 (2016)CrossRef
63.
Zurück zum Zitat P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11(1), 444–452 (2017)CrossRef P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor. ACS Nano 11(1), 444–452 (2017)CrossRef
64.
Zurück zum Zitat B. Pandit, D.P. Dubal, B.R. Sankapal, Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242, 382–389 (2017)CrossRef B. Pandit, D.P. Dubal, B.R. Sankapal, Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242, 382–389 (2017)CrossRef
65.
Zurück zum Zitat Y. Qian, R. Liu, Q. Wang, J. Xu, D. Chen, G. Shen, Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2(28), 10917–10922 (2014)CrossRef Y. Qian, R. Liu, Q. Wang, J. Xu, D. Chen, G. Shen, Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2(28), 10917–10922 (2014)CrossRef
66.
Zurück zum Zitat P. Pande, P.G. Rasmussen, L.T. Thompson, Charge storage on nanostructured early transition metal nitrides and carbides. J. Power Sources 207, 212–215 (2012)CrossRef P. Pande, P.G. Rasmussen, L.T. Thompson, Charge storage on nanostructured early transition metal nitrides and carbides. J. Power Sources 207, 212–215 (2012)CrossRef
67.
Zurück zum Zitat M.S. Javed, S. Dai, M. Wang, Y. Xi, Q. Lang, D. Guo, C. Hu, Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 7(32), 13610–13618 (2015)CrossRef M.S. Javed, S. Dai, M. Wang, Y. Xi, Q. Lang, D. Guo, C. Hu, Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 7(32), 13610–13618 (2015)CrossRef
68.
Zurück zum Zitat X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017)CrossRef X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017)CrossRef
69.
Zurück zum Zitat A. Achour, J.B. Ducros, R.L. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, M.A. Djouadi, T. Brousse, Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 7, 104–113 (2014)CrossRef A. Achour, J.B. Ducros, R.L. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, M.A. Djouadi, T. Brousse, Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 7, 104–113 (2014)CrossRef
70.
Zurück zum Zitat Y. Yue, P. Han, X. He, K. Zhang, Z. Liu, C. Zhang, S. Dong, L. Gu, G. Cui, In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. J. Mater. Chem. 22(11), 4938–4943 (2012)CrossRef Y. Yue, P. Han, X. He, K. Zhang, Z. Liu, C. Zhang, S. Dong, L. Gu, G. Cui, In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage. J. Mater. Chem. 22(11), 4938–4943 (2012)CrossRef
71.
Zurück zum Zitat A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47(1), 89–107 (1994)CrossRef A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47(1), 89–107 (1994)CrossRef
72.
Zurück zum Zitat M. Kalaji, P.J. Murphy, G.O. Williams, The study of conducting polymers for use as redox supercapacitors. Synth. Met. 102(1), 1360–1361 (1999)CrossRef M. Kalaji, P.J. Murphy, G.O. Williams, The study of conducting polymers for use as redox supercapacitors. Synth. Met. 102(1), 1360–1361 (1999)CrossRef
73.
Zurück zum Zitat Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang, Z. Tang, L. Ma, F. Mo, C. Zhi, Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 1(4), 183–195 (2018)CrossRef Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang, Z. Tang, L. Ma, F. Mo, C. Zhi, Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 1(4), 183–195 (2018)CrossRef
74.
Zurück zum Zitat T.M. Ng, M.T. Weller, G.P. Kissling, L.M. Peter, P. Dale, F. Babbe, J. de Wild, B. Wenger, H.J. Snaith, D. Lane, Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. J. Mater. Chem. A 5(3), 1192–1200 (2017)CrossRef T.M. Ng, M.T. Weller, G.P. Kissling, L.M. Peter, P. Dale, F. Babbe, J. de Wild, B. Wenger, H.J. Snaith, D. Lane, Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. J. Mater. Chem. A 5(3), 1192–1200 (2017)CrossRef
75.
Zurück zum Zitat B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRef B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)CrossRef
76.
Zurück zum Zitat F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016)CrossRef F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016)CrossRef
77.
Zurück zum Zitat Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar, J. Xu, W. Sun, J. Zhu, Q. Yan, W. Huang, 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017)CrossRef Y. Zhang, Y. Zheng, K. Rui, H.H. Hng, K. Hippalgaonkar, J. Xu, W. Sun, J. Zhu, Q. Yan, W. Huang, 2D black phosphorus for energy storage and thermoelectric applications. Small 13(28), 1700661 (2017)CrossRef
78.
Zurück zum Zitat Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018)CrossRef Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2(11), 1800124 (2018)CrossRef
79.
Zurück zum Zitat P. Lu, X. Wang, L. Wen, X. Jiang, W. Guo, L. Wang, X. Yan, F. Hou, J. Liang, H.-M. Cheng, S.X. Dou, Silica-mediated formation of nickel sulfide nanosheets on CNT films for versatile energy storage. Small 15(15), 1805064 (2019)CrossRef P. Lu, X. Wang, L. Wen, X. Jiang, W. Guo, L. Wang, X. Yan, F. Hou, J. Liang, H.-M. Cheng, S.X. Dou, Silica-mediated formation of nickel sulfide nanosheets on CNT films for versatile energy storage. Small 15(15), 1805064 (2019)CrossRef
80.
Zurück zum Zitat M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009)CrossRef M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009)CrossRef
81.
Zurück zum Zitat A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6(10), 1600050 (2016)CrossRef A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6(10), 1600050 (2016)CrossRef
82.
Zurück zum Zitat H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang, H. Li, K. He, L. Ma, Z. Peng, S. Qiu, C. Sun, H.-M. Cheng, F. Li, An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 57(7), 1898–1902 (2018)CrossRef H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang, H. Li, K. He, L. Ma, Z. Peng, S. Qiu, C. Sun, H.-M. Cheng, F. Li, An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. Int. Ed. 57(7), 1898–1902 (2018)CrossRef
83.
Zurück zum Zitat L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016)CrossRef L. Wen, F. Li, H.M. Cheng, Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306–4337 (2016)CrossRef
84.
Zurück zum Zitat Y. Ai, Z. Lou, L. Li, S. Chen, H.S. Park, Z.M. Wang, G. Shen, Meters-long flexible CoNiO2-nanowires@ carbon-fibers based wire-supercapacitors for wearable electronics. Adv. Mater. Technol. 1(8), 1600142 (2016)CrossRef Y. Ai, Z. Lou, L. Li, S. Chen, H.S. Park, Z.M. Wang, G. Shen, Meters-long flexible CoNiO2-nanowires@ carbon-fibers based wire-supercapacitors for wearable electronics. Adv. Mater. Technol. 1(8), 1600142 (2016)CrossRef
85.
Zurück zum Zitat B. Liu, D. Tan, X. Wang, D. Chen, G. Shen, Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. Small 9(11), 1998–2004 (2013)CrossRef B. Liu, D. Tan, X. Wang, D. Chen, G. Shen, Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. Small 9(11), 1998–2004 (2013)CrossRef
86.
Zurück zum Zitat Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24(42), 5713–5718 (2012)CrossRef Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, D. Zou, Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24(42), 5713–5718 (2012)CrossRef
87.
Zurück zum Zitat S. Shi, C. Xu, C. Yang, Y. Chen, J. Liu, F. Kang, Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Sci. Rep. 3, 2598 (2013)CrossRef S. Shi, C. Xu, C. Yang, Y. Chen, J. Liu, F. Kang, Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Sci. Rep. 3, 2598 (2013)CrossRef
88.
Zurück zum Zitat T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, Z. Wei, Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3(46), 23957–23962 (2013)CrossRef T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, Z. Wei, Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3(46), 23957–23962 (2013)CrossRef
89.
Zurück zum Zitat Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012)CrossRef Y. Huang, J. Liang, Y. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8(12), 1805–1834 (2012)CrossRef
90.
Zurück zum Zitat H. Gao, F. Xiao, C.B. Ching, H. Duan, Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 4(12), 7020–7026 (2012)CrossRef H. Gao, F. Xiao, C.B. Ching, H. Duan, Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 4(12), 7020–7026 (2012)CrossRef
91.
Zurück zum Zitat Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013)CrossRef Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25(16), 2326–2331 (2013)CrossRef
92.
Zurück zum Zitat X. Hong, Y. Lu, S. Li, X. Wang, X. Wang, J. Liang, Carbon foam@reduced graphene oxide scaffold grown with polyaniline nanofibers for high performance symmetric supercapacitor. Electrochim. Acta 294, 376–382 (2019)CrossRef X. Hong, Y. Lu, S. Li, X. Wang, X. Wang, J. Liang, Carbon foam@reduced graphene oxide scaffold grown with polyaniline nanofibers for high performance symmetric supercapacitor. Electrochim. Acta 294, 376–382 (2019)CrossRef
93.
Zurück zum Zitat Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 1(2), 258–261 (2013)CrossRef Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A 1(2), 258–261 (2013)CrossRef
94.
Zurück zum Zitat A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres. Nature 423(6941), 703 (2003)CrossRef A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres. Nature 423(6941), 703 (2003)CrossRef
95.
Zurück zum Zitat P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu, F. Li, J.H. Byun, W. Lu, Q. Li, T.W. Chou, Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014)CrossRef P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu, F. Li, J.H. Byun, W. Lu, Q. Li, T.W. Chou, Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 4(3), 1300759 (2014)CrossRef
96.
Zurück zum Zitat J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)CrossRef J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)CrossRef
97.
Zurück zum Zitat X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun, P. Chen, X. Fang, Z. Zhang, G. Guan, H. Peng, Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014)CrossRef X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun, P. Chen, X. Fang, Z. Zhang, G. Guan, H. Peng, Electrochromic fiber-shaped supercapacitors. Adv. Mater. 26(48), 8126–8132 (2014)CrossRef
98.
Zurück zum Zitat Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52(50), 13453–13457 (2013)CrossRef Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed. 52(50), 13453–13457 (2013)CrossRef
99.
Zurück zum Zitat L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014)CrossRef L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014)CrossRef
100.
Zurück zum Zitat X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25(44), 6436–6441 (2013)CrossRef X. Chen, L. Qiu, J. Ren, G. Guan, H. Lin, Z. Zhang, P. Chen, Y. Wang, H. Peng, Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25(44), 6436–6441 (2013)CrossRef
101.
Zurück zum Zitat H. Wu, K. Jiang, S. Gu, H. Yang, Z. Lou, D. Chen, G. Shen, Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 8(11), 3544–3552 (2015)CrossRef H. Wu, K. Jiang, S. Gu, H. Yang, Z. Lou, D. Chen, G. Shen, Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 8(11), 3544–3552 (2015)CrossRef
102.
Zurück zum Zitat M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRef M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRef
103.
Zurück zum Zitat Y.S. Moon, D. Kim, G. Lee, S.Y. Hong, K.K. Kim, S.M. Park, J.S. Ha, Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnOx electrodes and its application. Carbon 81, 29–37 (2015)CrossRef Y.S. Moon, D. Kim, G. Lee, S.Y. Hong, K.K. Kim, S.M. Park, J.S. Ha, Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnOx electrodes and its application. Carbon 81, 29–37 (2015)CrossRef
104.
Zurück zum Zitat Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28(11), 2217–2222 (2016)CrossRef Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Müllen, Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 28(11), 2217–2222 (2016)CrossRef
105.
Zurück zum Zitat J. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016)CrossRef J. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016)CrossRef
106.
Zurück zum Zitat Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb, B. Anasori, E.C. Kumbur, H.N. Alshareef, M.-D. Ger, Y. Gogotsi, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016)CrossRef Y.-Y. Peng, B. Akuzum, N. Kurra, M.-Q. Zhao, M. Alhabeb, B. Anasori, E.C. Kumbur, H.N. Alshareef, M.-D. Ger, Y. Gogotsi, All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 9(9), 2847–2854 (2016)CrossRef
107.
Zurück zum Zitat M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef
108.
Zurück zum Zitat X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, G. Shen, SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5(17), 7831–7837 (2013)CrossRef X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, G. Shen, SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 5(17), 7831–7837 (2013)CrossRef
109.
Zurück zum Zitat X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10), 9200–9206 (2012)CrossRef X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10), 9200–9206 (2012)CrossRef
110.
Zurück zum Zitat Y. Ai, Z. Lou, S. Chen, D. Chen, Z.M. Wang, K. Jiang, G. Shen, All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 35, 121–127 (2017)CrossRef Y. Ai, Z. Lou, S. Chen, D. Chen, Z.M. Wang, K. Jiang, G. Shen, All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 35, 121–127 (2017)CrossRef
111.
Zurück zum Zitat C. Yan, P.S. Lee, Stretchable energy storage and conversion devices. Small 10(17), 3443–3460 (2014)CrossRef C. Yan, P.S. Lee, Stretchable energy storage and conversion devices. Small 10(17), 3443–3460 (2014)CrossRef
112.
Zurück zum Zitat X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, Z.L. Wang, Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11(2), 1728–1735 (2017)CrossRef X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, Z.L. Wang, Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 11(2), 1728–1735 (2017)CrossRef
113.
Zurück zum Zitat X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014)CrossRef X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chem. Int. Ed. 53(7), 1849–1853 (2014)CrossRef
114.
Zurück zum Zitat D. Kim, D. Kim, H. Lee, Y.R. Jeong, S.J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 28(4), 748–756 (2016)CrossRef D. Kim, D. Kim, H. Lee, Y.R. Jeong, S.J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 28(4), 748–756 (2016)CrossRef
115.
Zurück zum Zitat J. Xu, G. Shen, A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 13, 131–139 (2015)CrossRef J. Xu, G. Shen, A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 13, 131–139 (2015)CrossRef
116.
Zurück zum Zitat J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa, G. Yushin, Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices. Adv. Mater. 25(45), 6625–6632 (2013)CrossRef J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa, G. Yushin, Multifunctional CNT-polymer composites for ultra-tough structural supercapacitors and desalination devices. Adv. Mater. 25(45), 6625–6632 (2013)CrossRef
117.
Zurück zum Zitat S.R. Shin, C.K. Lee, I. So, J.-H. Jeon, T.M. Kang, C. Kee, S.I. Kim, G.M. Spinks, G.G. Wallace, S.J. Kim, DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv. Mater. 20(3), 466–470 (2008)CrossRef S.R. Shin, C.K. Lee, I. So, J.-H. Jeon, T.M. Kang, C. Kee, S.I. Kim, G.M. Spinks, G.G. Wallace, S.J. Kim, DNA-wrapped single-walled carbon nanotube hybrid fibers for supercapacitors and artificial muscles. Adv. Mater. 20(3), 466–470 (2008)CrossRef
118.
Zurück zum Zitat Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, L. Qu, All-in-one graphene fiber supercapacitor. Nanoscale 6(12), 6448–6451 (2014)CrossRef Y. Hu, H. Cheng, F. Zhao, N. Chen, L. Jiang, Z. Feng, L. Qu, All-in-one graphene fiber supercapacitor. Nanoscale 6(12), 6448–6451 (2014)CrossRef
119.
Zurück zum Zitat Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li, Z. Wang, Q. Xue, C. Zhi, Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016)CrossRef Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li, Z. Wang, Q. Xue, C. Zhi, Multifunctional energy storage and conversion devices. Adv. Mater. 28(38), 8344–8364 (2016)CrossRef
120.
Zurück zum Zitat X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016)CrossRef X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016)CrossRef
121.
Zurück zum Zitat Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang, Y. Ma, C. Yang, J. Su, L. Li, F. Long, Z. Zou, Y. Gao, A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10(12), 11249–11257 (2016)CrossRef Y. Yue, Z. Yang, N. Liu, W. Liu, H. Zhang, Y. Ma, C. Yang, J. Su, L. Li, F. Long, Z. Zou, Y. Gao, A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano 10(12), 11249–11257 (2016)CrossRef
122.
Zurück zum Zitat Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012)CrossRef Z.L. Wang, Self-powered nanosensors and nanosystems. Adv. Mater. 24(2), 280–285 (2012)CrossRef
123.
Zurück zum Zitat T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51(48), 11977–11980 (2012)CrossRef T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51(48), 11977–11980 (2012)CrossRef
124.
Zurück zum Zitat H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016)CrossRef H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10(11), 10580–10588 (2016)CrossRef
125.
Zurück zum Zitat H. Huang, L. Lu, J. Wang, J. Yang, S.-F. Leung, Y. Wang, D. Chen, X. Chen, G. Shen, D. Li, Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy Environ. Sci. 6(10), 2965–2971 (2013)CrossRef H. Huang, L. Lu, J. Wang, J. Yang, S.-F. Leung, Y. Wang, D. Chen, X. Chen, G. Shen, D. Li, Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy Environ. Sci. 6(10), 2965–2971 (2013)CrossRef
126.
Zurück zum Zitat S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242 (2014)CrossRef S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242 (2014)CrossRef
127.
Zurück zum Zitat J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1(5), 1600074 (2016)CrossRef J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1(5), 1600074 (2016)CrossRef
128.
Zurück zum Zitat H. Yoon, S.M. Kang, J.-K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9(7), 2262–2266 (2016)CrossRef H. Yoon, S.M. Kang, J.-K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9(7), 2262–2266 (2016)CrossRef
129.
Zurück zum Zitat Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, H. Peng, Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26(3), 466–470 (2014)CrossRef Z. Zhang, X. Chen, P. Chen, G. Guan, L. Qiu, H. Lin, Z. Yang, W. Bai, Y. Luo, H. Peng, Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable fiber format. Adv. Mater. 26(3), 466–470 (2014)CrossRef
130.
Zurück zum Zitat M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue, H. Li, H. Geng, C. Zhi, Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016)CrossRef M. Zhu, Y. Huang, Y. Huang, Z. Pei, Q. Xue, H. Li, H. Geng, C. Zhi, Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 26(25), 4481–4490 (2016)CrossRef
131.
Zurück zum Zitat J. Xu, H. Wu, L. Lu, S.F. Leung, D. Chen, X. Chen, Z. Fan, G. Shen, D. Li, Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 24(13), 1840–1846 (2014)CrossRef J. Xu, H. Wu, L. Lu, S.F. Leung, D. Chen, X. Chen, Z. Fan, G. Shen, D. Li, Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 24(13), 1840–1846 (2014)CrossRef
132.
Zurück zum Zitat Y. Fu, H. Wu, S. Ye, X. Cai, X. Yu, S. Hou, H. Kafafy, D. Zou, Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6(3), 805–812 (2013)CrossRef Y. Fu, H. Wu, S. Ye, X. Cai, X. Yu, S. Hou, H. Kafafy, D. Zou, Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6(3), 805–812 (2013)CrossRef
133.
Zurück zum Zitat Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin, H. Peng, An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 1(3), 954–958 (2013)CrossRef Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin, H. Peng, An integrated device for both photoelectric conversion and energy storage based on free-standing and aligned carbon nanotube film. J. Mater. Chem. A 1(3), 954–958 (2013)CrossRef
134.
Zurück zum Zitat Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P.K. Yang, F. Yi, Z.L. Wang, Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015)CrossRef Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P.K. Yang, F. Yi, Z.L. Wang, Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27(14), 2340–2347 (2015)CrossRef
135.
Zurück zum Zitat G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing, J. Chen, Z.L. Wang, A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788–3796 (2014)CrossRef G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q. Jing, J. Chen, Z.L. Wang, A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 26(23), 3788–3796 (2014)CrossRef
136.
Zurück zum Zitat G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)CrossRef G. Zhu, B. Peng, J. Chen, Q. Jing, Z.L. Wang, Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14, 126–138 (2015)CrossRef
137.
Zurück zum Zitat Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li, Z.L. Wang, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016)CrossRef Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li, Z.L. Wang, Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2(3), e1501478 (2016)CrossRef
138.
Zurück zum Zitat C. Zhang, Z.L. Wang, Tribotronics—a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016)CrossRef C. Zhang, Z.L. Wang, Tribotronics—a new field by coupling triboelectricity and semiconductor. Nano Today 11(4), 521–536 (2016)CrossRef
139.
Zurück zum Zitat Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, Z.L. Wang, Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599–6607 (2014)CrossRef Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, Z.L. Wang, Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 26(38), 6599–6607 (2014)CrossRef
140.
Zurück zum Zitat W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470 (2014)CrossRef W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T.F. Heinz, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523), 470 (2014)CrossRef
141.
Zurück zum Zitat Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRef Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRef
142.
Zurück zum Zitat Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015)CrossRef Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8(8), 2250–2282 (2015)CrossRef
143.
Zurück zum Zitat S. Wang, Z.-H. Lin, S. Niu, L. Lin, Y. Xie, K.C. Pradel, Z.L. Wang, Motion charged battery as sustainable flexible-power-unit. ACS Nano 7(12), 11263–11271 (2013)CrossRef S. Wang, Z.-H. Lin, S. Niu, L. Lin, Y. Xie, K.C. Pradel, Z.L. Wang, Motion charged battery as sustainable flexible-power-unit. ACS Nano 7(12), 11263–11271 (2013)CrossRef
144.
Zurück zum Zitat J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z.L. Wang, A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27(33), 4830–4836 (2015)CrossRef J. Wang, X. Li, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z.L. Wang, A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 27(33), 4830–4836 (2015)CrossRef
145.
Zurück zum Zitat W. Tang, C.B. Han, C. Zhang, Z.L. Wang, Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 9, 121–127 (2014)CrossRef W. Tang, C.B. Han, C. Zhang, Z.L. Wang, Cover-sheet-based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 9, 121–127 (2014)CrossRef
146.
Zurück zum Zitat X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)CrossRef X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5), e1700015 (2017)CrossRef
Metadaten
Titel
Self-responsive Nanomaterials for Flexible Supercapacitors
verfasst von
Daolan Liu
Yueyu Tong
Lei Wen
Ji Liang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-39994-8_3