Skip to main content

2019 | OriginalPaper | Buchkapitel

Self-stabilizing Snapshot Objects for Asynchronous Failure-Prone Networked Systems

verfasst von : Chryssis Georgiou, Oskar Lundström, Elad Michael Schiller

Erschienen in: Networked Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A snapshot object simulates the behavior of an array of single-writer/multi-reader shared registers that can be read atomically. Delporte-Gallet et al. proposed two fault-tolerant algorithms for snapshot objects in asynchronous crash-prone message-passing systems. Their first algorithm is non-blocking; it allows snapshot operations to terminate once all write operations had ceased. It uses \(\mathcal {O}(n)\) messages of \(\mathcal {O}(n \cdot \nu )\) bits, where n is the number of nodes and \(\nu \) is the number of bits it takes to represent the object. Their second algorithm allows snapshot operations to always terminate independently of write operations. It incurs \(\mathcal {O}(n^2)\) messages. The fault model of Delporte-Gallet et al. considers node failures (crashes). We aim at the design of even more robust snapshot objects. We do so through the lenses of self-stabilization—a very strong notion of fault-tolerance. In addition to Delporte-Gallet et al. ’s fault model, a self-stabilizing algorithm can recover after the occurrence of transient faults; these faults represent arbitrary violations of the assumptions according to which the system was designed to operate (as long as the code stays intact). In particular, in this work, we propose self-stabilizing variations of Delporte-Gallet et al. ’s non-blocking algorithm and always-terminating algorithm. Our algorithms have similar communication costs to the ones by Delporte-Gallet et al. and \(\mathcal {O}(1)\) recovery time (in terms of asynchronous cycles) from transient faults. The main differences are that our proposal considers repeated gossiping of \(\mathcal {O}(\nu )\) bits messages and deals with bounded space, which is a prerequisite for self-stabilization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)CrossRef Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)CrossRef
3.
Zurück zum Zitat Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRef Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRef
5.
Zurück zum Zitat Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. J. ACM 42(1), 124–142 (1995)CrossRef Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. J. ACM 42(1), 124–142 (1995)CrossRef
6.
Zurück zum Zitat Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Implementing snapshot objects on top of crash-prone asynchronous message-passing systems. IEEE Trans. Parallel Distrib. Syst. 29(9), 2033–2045 (2018)CrossRef Delporte-Gallet, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Implementing snapshot objects on top of crash-prone asynchronous message-passing systems. IEEE Trans. Parallel Distrib. Syst. 29(9), 2033–2045 (2018)CrossRef
7.
Zurück zum Zitat Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Practically stabilizing SWMR atomic memory in message-passing systems. J. Comput. Syst. Sci. 81(4), 692–701 (2015)MathSciNetCrossRef Alon, N., Attiya, H., Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Practically stabilizing SWMR atomic memory in message-passing systems. J. Comput. Syst. Sci. 81(4), 692–701 (2015)MathSciNetCrossRef
8.
Zurück zum Zitat Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared atomic memory in seldomly fair message passing networks. CoRR abs/1806.03498 (2018) Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared atomic memory in seldomly fair message passing networks. CoRR abs/1806.03498 (2018)
9.
Zurück zum Zitat Georgiou, C., Lundström, O., Schiller, E.M.: Self-stabilizing snapshot objects for asynchronous failure-prone networked systems. CoRR (2019) Georgiou, C., Lundström, O., Schiller, E.M.: Self-stabilizing snapshot objects for asynchronous failure-prone networked systems. CoRR (2019)
10.
Zurück zum Zitat Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing: Algorithms and Complexity. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2011) Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing: Algorithms and Complexity. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2011)
11.
Zurück zum Zitat Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)MATH Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)MATH
13.
Zurück zum Zitat Imbs, D., Mostéfaoui, A., Perrin, M., Raynal, M.: Set-constrained delivery broadcast: Definition, abstraction power, and computability limits. In: 19th Distributed Computing and Networking, ICDCN, ACM (2018) 7:1–7:10 Imbs, D., Mostéfaoui, A., Perrin, M., Raynal, M.: Set-constrained delivery broadcast: Definition, abstraction power, and computability limits. In: 19th Distributed Computing and Networking, ICDCN, ACM (2018) 7:1–7:10
Metadaten
Titel
Self-stabilizing Snapshot Objects for Asynchronous Failure-Prone Networked Systems
verfasst von
Chryssis Georgiou
Oskar Lundström
Elad Michael Schiller
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-31277-0_8