Skip to main content

2024 | OriginalPaper | Buchkapitel

8. Self-Supervised Locality Preserving Low-Pass Graph Convolutional Embedding for Large-Scale Hyperspectral Image Clustering

verfasst von : Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Erschienen in: Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperspectral imagery (HSI) acquired by remote sensing system are composed of hundreds of contiguous and narrow spectral bands with abundant spatial-spectral information in the electromagnetic spectrum (Liu et al. in IEEE Trans Neural Netw Learn Syst 34:8989–9003, 2022; Gao et al. in IEEE Trans Geosci Remote Sens 60:1–15, 2022; Ding et al. in IEEE Geosci Remote Sens Lett 19:1–5, 2022). Due to its unique advantages, HSI has attracted lots of attention and has been widely applied in various fields, including military reconnaissance, urban mapping, biochemical detection, forest fire detection, and target recognition (Ding et al. in IEEE J Select Top Appl Earth Observ Remote Sens 14:4561–4572, 2021; Ding et al. in IEEE Trans Geosci Remote Sens 60:1–12, 2022; Li et al. in IEEE Trans Neural Netw Learn Syst 34:8057–8070, 2022), etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Liu, W. Li, X. Xia, M. Zhang, C. Gao, R. Tao, Central attention network for hyperspectral imagery classification. IEEE Trans. Neural Netw. Learn. Syst. 34, 8989–9003 (2022)CrossRef H. Liu, W. Li, X. Xia, M. Zhang, C. Gao, R. Tao, Central attention network for hyperspectral imagery classification. IEEE Trans. Neural Netw. Learn. Syst. 34, 8989–9003 (2022)CrossRef
2.
Zurück zum Zitat Y. Gao, W. Li, M. Zhang, J. Wang, W. Sun, R. Tao, Q. Du, Hyperspectral and multispectral classification for coastal wetland using depthwise feature interaction network. IEEE Trans. Geosci. Remote Sens.Geosci. Remote Sens. 60, 1–15 (2022) Y. Gao, W. Li, M. Zhang, J. Wang, W. Sun, R. Tao, Q. Du, Hyperspectral and multispectral classification for coastal wetland using depthwise feature interaction network. IEEE Trans. Geosci. Remote Sens.Geosci. Remote Sens. 60, 1–15 (2022)
5.
6.
Zurück zum Zitat W. Li, Y. Gao, M. Zhang, R. Tao, Q. Du, Asymmetric feature fusion network for hyperspectral and SAR image classification. IEEE Trans. Neural Netw. Learn. Syst. 34, 8057–8070 (2022)CrossRef W. Li, Y. Gao, M. Zhang, R. Tao, Q. Du, Asymmetric feature fusion network for hyperspectral and SAR image classification. IEEE Trans. Neural Netw. Learn. Syst. 34, 8057–8070 (2022)CrossRef
7.
Zurück zum Zitat Y. Zhang, W. Li, R. Tao, J. Peng, Q. Du, Z. Cai, Cross-scene hyperspectral image classification with discriminative cooperative alignment. IEEE Trans. Geosci. Remote Sens.Geosci. Remote Sens. 59(11), 9646–9660 (2021)CrossRef Y. Zhang, W. Li, R. Tao, J. Peng, Q. Du, Z. Cai, Cross-scene hyperspectral image classification with discriminative cooperative alignment. IEEE Trans. Geosci. Remote Sens.Geosci. Remote Sens. 59(11), 9646–9660 (2021)CrossRef
9.
Zurück zum Zitat Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, Q. Yan, Graph convolutional subspace clustering: a robust subspace clustering framework for hyperspectral image. IEEE Trans. Geosci. Remote Sens.Geosci. Remote Sens. 59(5), 4191–4202 (2021)CrossRef Y. Cai, Z. Zhang, Z. Cai, X. Liu, X. Jiang, Q. Yan, Graph convolutional subspace clustering: a robust subspace clustering framework for hyperspectral image. IEEE Trans. Geosci. Remote Sens.Geosci. Remote Sens. 59(5), 4191–4202 (2021)CrossRef
10.
Zurück zum Zitat R. Vidal, Subspace clustering. IEEE Sig. Process. Mag. 28(2), 52–68 (2011)CrossRef R. Vidal, Subspace clustering. IEEE Sig. Process. Mag. 28(2), 52–68 (2011)CrossRef
11.
Zurück zum Zitat J. Lei, X. Li, B. Peng, L. Fang, N. Ling, Q. Huang, Deep spatialspectral subspace clustering for hyperspectral image. IEEE Trans. Circ. Syst. Video Technol. 31(7), 2686–2697 (2021)CrossRef J. Lei, X. Li, B. Peng, L. Fang, N. Ling, Q. Huang, Deep spatialspectral subspace clustering for hyperspectral image. IEEE Trans. Circ. Syst. Video Technol. 31(7), 2686–2697 (2021)CrossRef
12.
Zurück zum Zitat X. Peng, J. Feng, J.T. Zhou, Y. Lei, S. Yan, Deep subspace clustering. IEEE Trans. Neural Netw. Learn. Syst. 31(12), 5509–5521 (2020)MathSciNetCrossRef X. Peng, J. Feng, J.T. Zhou, Y. Lei, S. Yan, Deep subspace clustering. IEEE Trans. Neural Netw. Learn. Syst. 31(12), 5509–5521 (2020)MathSciNetCrossRef
13.
Zurück zum Zitat X. Yang, G. Lin, Y. Liu, F. Nie, L. Lin, Fast spectral embedded clustering based on structured graph learning for large-scale hyperspectral image. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022) X. Yang, G. Lin, Y. Liu, F. Nie, L. Lin, Fast spectral embedded clustering based on structured graph learning for large-scale hyperspectral image. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)
14.
Zurück zum Zitat R. Wang, F. Nie, W. Yu, Fast spectral clustering with anchor graph for large hyperspectral images. IEEE Geosci. Remote Sens. Lett. 14(11), 2003–2007 (2017)CrossRef R. Wang, F. Nie, W. Yu, Fast spectral clustering with anchor graph for large hyperspectral images. IEEE Geosci. Remote Sens. Lett. 14(11), 2003–2007 (2017)CrossRef
15.
Zurück zum Zitat T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)CrossRef T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)CrossRef
16.
Zurück zum Zitat A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in Proceedings of the Advance Neural Information Processing System (NIPS) (2002), pp. 849–856 A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in Proceedings of the Advance Neural Information Processing System (NIPS) (2002), pp. 849–856
17.
Zurück zum Zitat T. Yang, C. Lee, S. Yen, Fuzzy objective functions for robust pattern recognition, in Proceedings of the 2009 IEEE International Conference on Fuzzy Systems (2009), pp. 2057–2062 T. Yang, C. Lee, S. Yen, Fuzzy objective functions for robust pattern recognition, in Proceedings of the 2009 IEEE International Conference on Fuzzy Systems (2009), pp. 2057–2062
18.
Zurück zum Zitat C.A. Shah, M.K. Arora, P.K. Varshney, Unsupervised classification of hyperspectral data: an ICA mixture model-based approach. Int. J. Remote Sens. 25(2), 481–487 (2004)CrossRef C.A. Shah, M.K. Arora, P.K. Varshney, Unsupervised classification of hyperspectral data: an ICA mixture model-based approach. Int. J. Remote Sens. 25(2), 481–487 (2004)CrossRef
19.
Zurück zum Zitat Y. Zhang, W. Li, M. Zhang, Y. Qu, R. Tao, H. Qi, Topological structure and semantic information transfer network for cross-scene hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. (2022) Y. Zhang, W. Li, M. Zhang, Y. Qu, R. Tao, H. Qi, Topological structure and semantic information transfer network for cross-scene hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. (2022)
20.
Zurück zum Zitat J. Lin, C. He, Z.J. Wang, S. Li, Structure preserving transfer learning for unsupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14(10), 1656–1660 (2017)CrossRef J. Lin, C. He, Z.J. Wang, S. Li, Structure preserving transfer learning for unsupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14(10), 1656–1660 (2017)CrossRef
21.
Zurück zum Zitat J.M. Murphy, M. Maggioni, Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion. IEEE Trans. Geosci. Remote Sens. 57(3), 1829–1845 (2019)CrossRef J.M. Murphy, M. Maggioni, Unsupervised clustering and active learning of hyperspectral images with nonlinear diffusion. IEEE Trans. Geosci. Remote Sens. 57(3), 1829–1845 (2019)CrossRef
22.
Zurück zum Zitat E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRef E. Elhamifar, R. Vidal, Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)CrossRef
23.
Zurück zum Zitat X. Peng, H. Tang, L. Zhang, Z. Yi, S. Xiao, A unified framework for representation-based subspace clustering of out-of-sample and largescale data. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2499–2512 (2016)MathSciNetCrossRef X. Peng, H. Tang, L. Zhang, Z. Yi, S. Xiao, A unified framework for representation-based subspace clustering of out-of-sample and largescale data. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2499–2512 (2016)MathSciNetCrossRef
24.
Zurück zum Zitat J. Fan, T. Chen, S. Lu, Superpixel guided deep-sparse-representation learning for hyperspectral image classification. IEEE Trans. Circ. Syst. Video Technol. 28(11), 3163–3173 (2018)CrossRef J. Fan, T. Chen, S. Lu, Superpixel guided deep-sparse-representation learning for hyperspectral image classification. IEEE Trans. Circ. Syst. Video Technol. 28(11), 3163–3173 (2018)CrossRef
25.
Zurück zum Zitat S. Matsushima, M. Brbic, Selective sampling-based scalable sparse subspace clustering, in Advances in Neural Information Processing Systems, by eds. H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alche-Buc, E. Fox, R. Garnett (Curran Associates, Inc., 2019) S. Matsushima, M. Brbic, Selective sampling-based scalable sparse subspace clustering, in Advances in Neural Information Processing Systems, by eds. H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alche-Buc, E. Fox, R. Garnett (Curran Associates, Inc., 2019)
26.
Zurück zum Zitat H. Zhai, H. Zhang, L. Zhang, P. Li, Total variation regularized collaborative representation clustering with a locally adaptive dictionary for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 57(1), 166–180 (2018)CrossRef H. Zhai, H. Zhang, L. Zhang, P. Li, Total variation regularized collaborative representation clustering with a locally adaptive dictionary for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 57(1), 166–180 (2018)CrossRef
27.
Zurück zum Zitat S. Chen, D. Zhang, Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B 34(4), 1907–1916 (2004)CrossRef S. Chen, D. Zhang, Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B 34(4), 1907–1916 (2004)CrossRef
28.
Zurück zum Zitat Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Li, W. Cai, Y. Zhan, AF2GNN: graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification, in Information Sciences (2022) Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Li, W. Cai, Y. Zhan, AF2GNN: graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification, in Information Sciences (2022)
29.
Zurück zum Zitat F. Nie, X. Wang, M. Jordan, H. Huang, The constrained Laplacian rank algorithm for graph-based clustering, in Proceedings of the AAAI Conference on Artificial Intelligence (2016) F. Nie, X. Wang, M. Jordan, H. Huang, The constrained Laplacian rank algorithm for graph-based clustering, in Proceedings of the AAAI Conference on Artificial Intelligence (2016)
30.
Zurück zum Zitat J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in Proceedings of the 33rd International Conference on Machine Learning, Series Proceedings of Machine Learning Research, by eds. M.F. Balcan, K.Q. Weinberger (PMLR, New York, 2016), pp. 478–487 J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in Proceedings of the 33rd International Conference on Machine Learning, Series Proceedings of Machine Learning Research, by eds. M.F. Balcan, K.Q. Weinberger (PMLR, New York, 2016), pp. 478–487
31.
Zurück zum Zitat Y. Cai, M. Zeng, Z. Cai, X. Liu, Z. Zhang, Graph regularized residual subspace clustering network for hyperspectral image clustering. Inform. Sci. 578, 85–101 (2021)MathSciNetCrossRef Y. Cai, M. Zeng, Z. Cai, X. Liu, Z. Zhang, Graph regularized residual subspace clustering network for hyperspectral image clustering. Inform. Sci. 578, 85–101 (2021)MathSciNetCrossRef
32.
Zurück zum Zitat Y. Cai, Z. Zhang, P. Ghamisi, Y. Ding, X. Liu, Z. Cai, R. Gloaguen, Superpixel contracted neighborhood contrastive subspace clustering network for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022) Y. Cai, Z. Zhang, P. Ghamisi, Y. Ding, X. Liu, Z. Cai, R. Gloaguen, Superpixel contracted neighborhood contrastive subspace clustering network for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)
33.
Zurück zum Zitat J. Lei, X. Li, B. Peng, L. Fang, N. Ling, Q. Huang, Deep spatial-spectral subspace clustering for hyperspectral image. IEEE Trans. Circ. Syst. Video Technol. 31(7), 2686–2697 (2021)CrossRef J. Lei, X. Li, B. Peng, L. Fang, N. Ling, Q. Huang, Deep spatial-spectral subspace clustering for hyperspectral image. IEEE Trans. Circ. Syst. Video Technol. 31(7), 2686–2697 (2021)CrossRef
34.
Zurück zum Zitat S. Hou, H. Shi, X. Cao, X. Zhang, L. Jiao, Hyperspectral imagery classification based on contrastive learning. IEEE Trans. Geosci. Remote Sens. (2021) S. Hou, H. Shi, X. Cao, X. Zhang, L. Jiao, Hyperspectral imagery classification based on contrastive learning. IEEE Trans. Geosci. Remote Sens. (2021)
35.
Zurück zum Zitat Y. Li, P. Hu, Z. Liu, D. Peng, J.T. Zhou, X. Peng, Contrastive clustering, in Proceedings of the 2021 AAAI Conference on Artificial Intelligence (AAAI) (2021), pp. 8547–8555 Y. Li, P. Hu, Z. Liu, D. Peng, J.T. Zhou, X. Peng, Contrastive clustering, in Proceedings of the 2021 AAAI Conference on Artificial Intelligence (AAAI) (2021), pp. 8547–8555
36.
Zurück zum Zitat J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral Networks and Locally Connected Networks on Graphs (2013) J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral Networks and Locally Connected Networks on Graphs (2013)
37.
Zurück zum Zitat T. Kipf, M. Welling, Variational Graph Auto-Encoders (2016) T. Kipf, M. Welling, Variational Graph Auto-Encoders (2016)
38.
Zurück zum Zitat T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in Proceedings of the ICLR (2017) T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in Proceedings of the ICLR (2017)
39.
Zurück zum Zitat P. Veličković, G. Cucurull, A. Casanova, et al., Graph Attention Networks (2017) P. Veličković, G. Cucurull, A. Casanova, et al., Graph Attention Networks (2017)
40.
Zurück zum Zitat C. Wang, S. Pan, G. Long, X. Zhu, J. Jing, Mgae: marginalized graph autoencoder for graph clustering, in Proceedings of the 2017 ACM (2017) C. Wang, S. Pan, G. Long, X. Zhu, J. Jing, Mgae: marginalized graph autoencoder for graph clustering, in Proceedings of the 2017 ACM (2017)
41.
Zurück zum Zitat J. Park, M. Lee, H.J. Chang, K. Lee, J. Choi, Symmetric graph convolutional autoencoder for unsupervised graph representation learning, in Proceedings of the IEEE International Conference on Computer Vision (2019), pp. 6519–6528 J. Park, M. Lee, H.J. Chang, K. Lee, J. Choi, Symmetric graph convolutional autoencoder for unsupervised graph representation learning, in Proceedings of the IEEE International Conference on Computer Vision (2019), pp. 6519–6528
42.
Zurück zum Zitat X. Zhang, H. Liu, Q. Li, X. Wu, Attributed graph clustering via adaptive graph convolution, in Proceedings of the 28th International Joint Conference on Artificial Intelligence (AAAI Press, 2019), pp. 4327–4333 X. Zhang, H. Liu, Q. Li, X. Wu, Attributed graph clustering via adaptive graph convolution, in Proceedings of the 28th International Joint Conference on Artificial Intelligence (AAAI Press, 2019), pp. 4327–4333
43.
Zurück zum Zitat S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding. IJCAI 12, 2609–2615 (2018) S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, C. Zhang, Adversarially regularized graph autoencoder for graph embedding. IJCAI 12, 2609–2615 (2018)
44.
Zurück zum Zitat R. Horn, C. Johnson, Matrix Analysis (Cambridge university press, 2012) R. Horn, C. Johnson, Matrix Analysis (Cambridge university press, 2012)
45.
Zurück zum Zitat J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in ICML (PMLR, New York, 2016), pp. 478–487 J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in ICML (PMLR, New York, 2016), pp. 478–487
46.
Zurück zum Zitat B. Scholkopf, A. Smola, K.-R. Muller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)CrossRef B. Scholkopf, A. Smola, K.-R. Muller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)CrossRef
47.
Zurück zum Zitat R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Strunk, Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRef R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Strunk, Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRef
48.
Zurück zum Zitat G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef
Metadaten
Titel
Self-Supervised Locality Preserving Low-Pass Graph Convolutional Embedding for Large-Scale Hyperspectral Image Clustering
verfasst von
Yao Ding
Zhili Zhang
Haojie Hu
Fang He
Shuli Cheng
Yijun Zhang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8009-9_8