Skip to main content

2024 | OriginalPaper | Buchkapitel

Semantic Application Based on the Bhagavad Gita: A Deep Learning Approach

verfasst von : Anand Chauhan, Vasu Jain, Mohd. Mohsin, Manish Raj, Umesh Gupta, Sudhanshu Gupta

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent evolutions in Natural Language Processing involve techniques to convert text into meaningful high-dimensional numerical vector representations that can be used for various applications such as sentiment analysis. However, these vector representations can be computationally heavy and challenging to interpret. This paper proposes using autoencoders with cosine similarity as their loss function to generate encoded vectors that have intentionally discarded some semantic information. After the test, several autoencoder models like this were created to generate advice and question-answering trained on the entirety of the Hindu holy book of Bhagavad Gita by comparing it with the same algorithm working on the original vectors and concluding subjectively that the quality of the output has improved, while significantly reducing the time taken to generate an output. The findings suggest that intentional data loss through autoencoders is a promising technique for dimensionality reduction on word embeddings. The neural network was trained on the entire dataset using cosine similarity as the loss function. The work could explore the potential of this approach in other areas of natural language processing and develop more objective measures for evaluating its effectiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
11.
Zurück zum Zitat Ali, M.M., Joshi, R.C., Dutta, M.K.: An automated and efficient deep learning based classification of multiple skin disorders from skin lesion images. In: 2022 International Conference on Edge Computing and Applications (ICECAA), pp. 1156–1161. IEEE (2022) Ali, M.M., Joshi, R.C., Dutta, M.K.: An automated and efficient deep learning based classification of multiple skin disorders from skin lesion images. In: 2022 International Conference on Edge Computing and Applications (ICECAA), pp. 1156–1161. IEEE (2022)
12.
Zurück zum Zitat Ali, M.M., Joshi, R.C., Dutta, M.K., Burget, R., Mezina, A.: Deep learning-based classification of viruses using transmission electron microscopy images. In: 2022 45th International Conference on Telecommunications and Signal Processing (TSP), pp. 174–178. IEEE (2022) Ali, M.M., Joshi, R.C., Dutta, M.K., Burget, R., Mezina, A.: Deep learning-based classification of viruses using transmission electron microscopy images. In: 2022 45th International Conference on Telecommunications and Signal Processing (TSP), pp. 174–178. IEEE (2022)
13.
Zurück zum Zitat Ali, M.M., Raj, M., Vatsa, D.: FruizNet using an efficient convolutional neural network. In 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), pp. 287–292. IEEE (2023) Ali, M.M., Raj, M., Vatsa, D.: FruizNet using an efficient convolutional neural network. In 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), pp. 287–292. IEEE (2023)
14.
Zurück zum Zitat Gupta, U., Jain, V.: Social neuroscience: inferring mental states in social media (2024) Gupta, U., Jain, V.: Social neuroscience: inferring mental states in social media (2024)
15.
Zurück zum Zitat Gupta, U., Trivedi, G., Singh, D.: Human AI: social network analysis (2024) Gupta, U., Trivedi, G., Singh, D.: Human AI: social network analysis (2024)
16.
Zurück zum Zitat Gupta, U., Gupta, P., Agarwal, T., Pantola, D.: Gesture works—one stop solution. In: Proceedings of the International Conference on Intelligent Computing, Communication and Information Security, pp. 301–308. Springer Nature Singapore, Singapore (2022) Gupta, U., Gupta, P., Agarwal, T., Pantola, D.: Gesture works—one stop solution. In: Proceedings of the International Conference on Intelligent Computing, Communication and Information Security, pp. 301–308. Springer Nature Singapore, Singapore (2022)
17.
Zurück zum Zitat Gupta, U., Sharma, S., Jyani, U., Bhardwaj, A., Sharma, M.: Sign language detection for deaf and dumb students using deep learning: dore idioma. In: 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT), pp. 1–5. IEEE (2022) Gupta, U., Sharma, S., Jyani, U., Bhardwaj, A., Sharma, M.: Sign language detection for deaf and dumb students using deep learning: dore idioma. In: 2022 2nd International Conference on Innovative Sustainable Computational Technologies (CISCT), pp. 1–5. IEEE (2022)
Metadaten
Titel
Semantic Application Based on the Bhagavad Gita: A Deep Learning Approach
verfasst von
Anand Chauhan
Vasu Jain
Mohd. Mohsin
Manish Raj
Umesh Gupta
Sudhanshu Gupta
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_44