Skip to main content
Erschienen in: Cognitive Computation 2/2017

07.12.2016

Semantic Image Segmentation Method with Multiple Adjacency Trees and Multiscale Features

Erschienen in: Cognitive Computation | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Semantic image segmentation is the basis of image understanding, which is one of the most important human cognitive activities. Cognitive studies have shown that human neocortical information transmission depends on cognitive processing at multiple scales, and contextual information aids the human cognitive system in solving perceptual inference tasks. Inspired by multiscale cognitive mechanisms and contextual effects, in this paper, we propose a semantic image segmentation method addressing multiscale features and contextual information. To integrate multiscale features, after over-segmenting an image into small-scale segments, we employ a segment-based classifier and a CRF (conditional random field) model to generate large-scale regions. We then use the features of regions to train a region-based classifier. To capture context, we propose a multiple adjacency tree model where each tree represents one type of region relevance and can be generated by the adjacency graph corresponding to that relevance metric. Using the multiple tree model instead of a general graph model, we can perform exact inference with some simple assumptions and capture multiple types of regional context dependency. Experiments on the MSRC-21 and Stanford background datasets show advantages of our method over a segment-based CRF model using single-scale features. The results demonstrate the importance of multiscale features and contextual information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Fulkerson B, Vedaldi A, Soatto S. Class segmentation and object localization with superpixel neighborhoods. International conference on computer vision (ICCV). IEEE Computer Society; 2009. p. 670–677. Fulkerson B, Vedaldi A, Soatto S. Class segmentation and object localization with superpixel neighborhoods. International conference on computer vision (ICCV). IEEE Computer Society; 2009. p. 670–677.
4.
Zurück zum Zitat Galleguillos C, Belongie S. Context based object categorization: a critical survey. Comput Vis Image Underst 2010;114(6):712–722. Galleguillos C, Belongie S. Context based object categorization: a critical survey. Comput Vis Image Underst 2010;114(6):712–722.
5.
Zurück zum Zitat Haikonen POA. The role of associative processing in cognitive computing. Cogn Comput 2009;1:42–49.CrossRef Haikonen POA. The role of associative processing in cognitive computing. Cogn Comput 2009;1:42–49.CrossRef
6.
Zurück zum Zitat Han D, Hu Y, Ai S, Wang G. Uncertain graph classification based on extreme learning machine. Cogn Comput 2015;7:346–358.CrossRef Han D, Hu Y, Ai S, Wang G. Uncertain graph classification based on extreme learning machine. Cogn Comput 2015;7:346–358.CrossRef
7.
Zurück zum Zitat He X. 2008. Learning structured prediction models for image labeling. Ph.D. thesis, University of Toronto. He X. 2008. Learning structured prediction models for image labeling. Ph.D. thesis, University of Toronto.
8.
Zurück zum Zitat Huang GB. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 2014;6:376–390.CrossRef Huang GB. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 2014;6:376–390.CrossRef
9.
Zurück zum Zitat Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Pattern Anal Mach Intell 2012;42(2):513–529. Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Pattern Anal Mach Intell 2012;42(2):513–529.
10.
Zurück zum Zitat Huang Q, Han M, Wu B. Ioffe, S.: A hierarchical conditional random field for labeling and segmenting images of street scenes. IEEE conference on computer vision and pattern recognition (CVPR); 2011. p. 1953–1960. Huang Q, Han M, Wu B. Ioffe, S.: A hierarchical conditional random field for labeling and segmenting images of street scenes. IEEE conference on computer vision and pattern recognition (CVPR); 2011. p. 1953–1960.
11.
Zurück zum Zitat Ingber L. Computational algorithms derived from multiple scales of neocortical processing. Cogn Comput 2012; 4:38–50.CrossRef Ingber L. Computational algorithms derived from multiple scales of neocortical processing. Cogn Comput 2012; 4:38–50.CrossRef
12.
Zurück zum Zitat Kae A, Sohn K, Lee H, Learned-Miller E. Augmenting CRFs with Boltzmann machine shape priors for image labeling. IEEE conference on computer vision and pattern recognition (CVPR); 2013. p. 2019–2026. Kae A, Sohn K, Lee H, Learned-Miller E. Augmenting CRFs with Boltzmann machine shape priors for image labeling. IEEE conference on computer vision and pattern recognition (CVPR); 2013. p. 2019–2026.
13.
Zurück zum Zitat Kohli P, Ladicky L, Torr PHS. Robust higher order potentials for enforcing label consistency. Int J Comput Vis 2009;82(3):302–324.CrossRef Kohli P, Ladicky L, Torr PHS. Robust higher order potentials for enforcing label consistency. Int J Comput Vis 2009;82(3):302–324.CrossRef
14.
Zurück zum Zitat Ladicky L, Russell C, Kohli P. Associative hierarchical CRFs for object class image segmentation. International conference on computer vision (ICCV). IEEE Computer Society; 2009. p. 739–746. Ladicky L, Russell C, Kohli P. Associative hierarchical CRFs for object class image segmentation. International conference on computer vision (ICCV). IEEE Computer Society; 2009. p. 739–746.
15.
Zurück zum Zitat Ladicky L, Russell C, Kohli P, Torr PHS. Graph cut based inference with co-occurrence statistics. European conference on computer vision (ECCV); 2010. p. 239–253. Ladicky L, Russell C, Kohli P, Torr PHS. Graph cut based inference with co-occurrence statistics. European conference on computer vision (ECCV); 2010. p. 239–253.
16.
Zurück zum Zitat Liu F, Lin G, Shen C. CRF learning with CNN features for image segmentation. Pattern Recogn 2015; 48:2983–2992.CrossRef Liu F, Lin G, Shen C. CRF learning with CNN features for image segmentation. Pattern Recogn 2015; 48:2983–2992.CrossRef
17.
Zurück zum Zitat Liu W, Tao D, Cheng J, Tang Y. Multiview hessian discriminative sparse coding for image annotation. Comput Vis Image Underst 2014;118:50–60.CrossRef Liu W, Tao D, Cheng J, Tang Y. Multiview hessian discriminative sparse coding for image annotation. Comput Vis Image Underst 2014;118:50–60.CrossRef
18.
Zurück zum Zitat Luo Y, Tao D, Xu C. Multiview matrix completion for multilabel image classification. IEEE Trans Image Process 2015;24(8):2355–2367.CrossRef Luo Y, Tao D, Xu C. Multiview matrix completion for multilabel image classification. IEEE Trans Image Process 2015;24(8):2355–2367.CrossRef
19.
Zurück zum Zitat Mottaghi R, Chen X, Liu X, Cho NG, Lee SW. The role of context for object detection and semantic segmentation in the wild. IEEE conference on computer vision and pattern recognition (CVPR); 2014. Mottaghi R, Chen X, Liu X, Cho NG, Lee SW. The role of context for object detection and semantic segmentation in the wild. IEEE conference on computer vision and pattern recognition (CVPR); 2014.
20.
Zurück zum Zitat Mottaghi R, Fidler S, Yao J, Urtasun R, Parikh D. Analyzing semantic segmentation using hybrid human-machine CRFs. IEEE conference on computer vision and pattern recognition (CVPR); 2013. p. 3143–3150. Mottaghi R, Fidler S, Yao J, Urtasun R, Parikh D. Analyzing semantic segmentation using hybrid human-machine CRFs. IEEE conference on computer vision and pattern recognition (CVPR); 2013. p. 3143–3150.
21.
Zurück zum Zitat Nematollahi M, Zhang XP. A new robust context-based dense crf model for image labeling. International conference on image processing (ICIP); 2014. p. 5876–5880. Nematollahi M, Zhang XP. A new robust context-based dense crf model for image labeling. International conference on image processing (ICIP); 2014. p. 5876–5880.
22.
Zurück zum Zitat Nowozin S, Gehler PV, Lampert CH. On parameter learning in crf-based approaches to object class image segmentation. European conference on computer vision (ECCV); 2010. p. 98–111. Nowozin S, Gehler PV, Lampert CH. On parameter learning in crf-based approaches to object class image segmentation. European conference on computer vision (ECCV); 2010. p. 98–111.
23.
Zurück zum Zitat Ogiela L, Ogiela MR. Cognitive approach to bio-inspired medical image understanding. IEEE fifth conference on bio-inspired computing: theories and applications; 2010. p. 1010–1013. Ogiela L, Ogiela MR. Cognitive approach to bio-inspired medical image understanding. IEEE fifth conference on bio-inspired computing: theories and applications; 2010. p. 1010–1013.
24.
Zurück zum Zitat Parikh D, Zitnick CL, Chen T. Exploring tiny images: the roles of appearance and contextual information for machine and human object recognition. IEEE Trans Pattern Anal Mach Intell 2014;34(10):1978–1991. Parikh D, Zitnick CL, Chen T. Exploring tiny images: the roles of appearance and contextual information for machine and human object recognition. IEEE Trans Pattern Anal Mach Intell 2014;34(10):1978–1991.
25.
Zurück zum Zitat Pieck MA, van der Sommen F, Zinger S, de With PH. Real-time semantic context labeling for image understanding. International conference on image processing (ICIP). IEEE Computer Society; 2015. p. 3180–3184. Pieck MA, van der Sommen F, Zinger S, de With PH. Real-time semantic context labeling for image understanding. International conference on image processing (ICIP). IEEE Computer Society; 2015. p. 3180–3184.
26.
Zurück zum Zitat Sato YD, Nagatomi T, Horio K, Miyamoto H. The cognitive mechanisms of multi-scale perception for the recognition of extremely similar faces. Cogn Comput 2015;7:501–508.CrossRef Sato YD, Nagatomi T, Horio K, Miyamoto H. The cognitive mechanisms of multi-scale perception for the recognition of extremely similar faces. Cogn Comput 2015;7:501–508.CrossRef
27.
Zurück zum Zitat Gould S., Fulton R., Koller D. Decomposing a scene into geometric and semantically consistent regions. IEEE international conference on computer vision (ICCV). IEEE Computer Society; 2009. Gould S., Fulton R., Koller D. Decomposing a scene into geometric and semantically consistent regions. IEEE international conference on computer vision (ICCV). IEEE Computer Society; 2009.
28.
Zurück zum Zitat Shotton J, Winn J, Rother C, Criminisi A. TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int J Comput Vis 2007;81(1):2–23.CrossRef Shotton J, Winn J, Rother C, Criminisi A. TextonBoost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int J Comput Vis 2007;81(1):2–23.CrossRef
29.
Zurück zum Zitat Szummer M, Kohli P, Hoiem D. Learning CRFs using graph cuts. European conference on computer vision (ECCV); 2008. p. 582–595. Szummer M, Kohli P, Hoiem D. Learning CRFs using graph cuts. European conference on computer vision (ECCV); 2008. p. 582–595.
30.
Zurück zum Zitat Tang K, Paluri M, Fei-Fei L, Fergus R, Bourdev L. Improving image classification with local context. International conference on computer vision (ICCV). IEEE Computer Society; 2015. p. 1008–1016. Tang K, Paluri M, Fei-Fei L, Fergus R, Bourdev L. Improving image classification with local context. International conference on computer vision (ICCV). IEEE Computer Society; 2015. p. 1008–1016.
32.
Zurück zum Zitat Vedaldi A, Soatto S. Quick shift and kernel methods for mode seeking. European conference on computer vision (ECCV); 2008. Vedaldi A, Soatto S. Quick shift and kernel methods for mode seeking. European conference on computer vision (ECCV); 2008.
33.
Zurück zum Zitat Wang X, Song Y, Zhang Y, Xin J. Natural scene text detection with multi-layer segmentation and higher order conditional random field based analysis. Pattern Recogn Lett 2015;60:41– 47.CrossRef Wang X, Song Y, Zhang Y, Xin J. Natural scene text detection with multi-layer segmentation and higher order conditional random field based analysis. Pattern Recogn Lett 2015;60:41– 47.CrossRef
34.
Zurück zum Zitat Xu C, Tao D, Xu C. Large-margin multi-view information bottleneck. IEEE Trans Pattern Anal Mach Intell 2014;36(8):1559–1572.CrossRefPubMed Xu C, Tao D, Xu C. Large-margin multi-view information bottleneck. IEEE Trans Pattern Anal Mach Intell 2014;36(8):1559–1572.CrossRefPubMed
35.
Zurück zum Zitat Xu L, Ding S, Xu X, Zhang N. Self-adaptive extreme learning machine optimized by rough set theory and affinity propagation clustering. Cogn Comput 2016;4:1–9. Xu L, Ding S, Xu X, Zhang N. Self-adaptive extreme learning machine optimized by rough set theory and affinity propagation clustering. Cogn Comput 2016;4:1–9.
36.
Zurück zum Zitat Yu L, Xie J, Chen S. Conditional random field-based image labeling combining features of pixels, segments and regions. IET Comput Vis 2012;6(5):459–467.CrossRef Yu L, Xie J, Chen S. Conditional random field-based image labeling combining features of pixels, segments and regions. IET Comput Vis 2012;6(5):459–467.CrossRef
37.
Zurück zum Zitat Zhang P, Li M, Wu Y, An J, Jia J. Unsupervised SAR images segmentation using high-order conditional random fields model based on product-of-experts. Pattern Recogn Lett 2016;78:48–55.CrossRef Zhang P, Li M, Wu Y, An J, Jia J. Unsupervised SAR images segmentation using high-order conditional random fields model based on product-of-experts. Pattern Recogn Lett 2016;78:48–55.CrossRef
38.
Zurück zum Zitat Zhang P, Li M, Wu Y., Li H. Hierarchical conditional random fields model for semisupervised SAR image segmentation. IEEE Trans Geosci Remote Sens 2015;53(9):4933–4941.CrossRef Zhang P, Li M, Wu Y., Li H. Hierarchical conditional random fields model for semisupervised SAR image segmentation. IEEE Trans Geosci Remote Sens 2015;53(9):4933–4941.CrossRef
39.
Zurück zum Zitat Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model for outdoor scene classification. Cogn Comput 2015;7:20–33.CrossRef Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model for outdoor scene classification. Cogn Comput 2015;7:20–33.CrossRef
40.
Zurück zum Zitat Zhu H, Meng F, Cai J, Lu S. Beyond pixels: A comprehension survey from bottom-up to semantic image segmentation and cosegmentation. J Vis Commun Image Represent 2016;34:12–27.CrossRef Zhu H, Meng F, Cai J, Lu S. Beyond pixels: A comprehension survey from bottom-up to semantic image segmentation and cosegmentation. J Vis Commun Image Represent 2016;34:12–27.CrossRef
Metadaten
Titel
Semantic Image Segmentation Method with Multiple Adjacency Trees and Multiscale Features
Publikationsdatum
07.12.2016
Erschienen in
Cognitive Computation / Ausgabe 2/2017
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-016-9441-5

Weitere Artikel der Ausgabe 2/2017

Cognitive Computation 2/2017 Zur Ausgabe