Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 4/2021

30.06.2021 | Original Article

Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites

verfasst von: L. E. Barraza de León, H. Camacho-Montes, Y. Espinosa-Almeyda, J. A. Otero, R. Rodríguez-Ramos, J. C. López-Realpozo, F. J. Sabina

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a 3D semi-analytical finite element method (SAFEM) is developed to calculate the effective properties of piezoelectric fiber-reinforced composites (PFRC). Here, the calculations are implemented in one-eighth of the unit cell to simplify the method. The prediction of the effective properties for periodic PFRC made of piezoceramic unidirectional fibers (PZT) with square and hexagonal space arrangements in a soft non-piezoelectric matrix (polymer) is reported as a way to validate the 3D approach. The limit case, when short fibers become long ones, allows us to compare with results reported in the literature. For the analysis of effective properties as a function of fiber relative length, two cases are considered: (i) constant volume fraction and (ii) constant fiber radius. The constant volume fraction case is of special interest because according to the Voigt–Reuss–Hill approximation, the effective properties should remain constant. Then, in order to analyze this case, mechanical and electric fields are also shown. The obtained results show a physically congruent behavior. Good coincidences are obtained by comparing with asymptotic homogenization and the representative volume element methods. The 3D SAFEM is also implemented to study the bone piezoelectric behavior with attention to the role of the mineralized phase on the effective \(d_{333}^{*}\) piezoelectric coefficient.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 43001 (2008)CrossRef Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 43001 (2008)CrossRef
2.
Zurück zum Zitat Eynbeygi, M., Aghdam, M.M.: A micromechanical study on the electro-elastic behavior of piezoelectric fiber-reinforced composites using the element-free Galerkin method. Acta Mech. 226, 3177–3194 (2015)MathSciNetMATHCrossRef Eynbeygi, M., Aghdam, M.M.: A micromechanical study on the electro-elastic behavior of piezoelectric fiber-reinforced composites using the element-free Galerkin method. Acta Mech. 226, 3177–3194 (2015)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Vijaya, M.: Piezoelectric Materials and Devices. CRC Press, Boca Raton (2013) Vijaya, M.: Piezoelectric Materials and Devices. CRC Press, Boca Raton (2013)
4.
Zurück zum Zitat Bowen, C.R., Topolov, V.Y., Kim, H.A.: Modern Piezoelectric Energy-Harvesting Materials. Springer Series in Materials Science, vol. 238. Springer, Berlin (2016)CrossRef Bowen, C.R., Topolov, V.Y., Kim, H.A.: Modern Piezoelectric Energy-Harvesting Materials. Springer Series in Materials Science, vol. 238. Springer, Berlin (2016)CrossRef
5.
Zurück zum Zitat Cholleti, E.R.: A review on 3D printing of piezoelectric materials. IOP Conf. Ser. Mater. Sci. Eng. 455, 12046 (2018)CrossRef Cholleti, E.R.: A review on 3D printing of piezoelectric materials. IOP Conf. Ser. Mater. Sci. Eng. 455, 12046 (2018)CrossRef
6.
Zurück zum Zitat Newnham, R.E.: Composite electroceramics. Ferroelectrics 68, 1–32 (1986)CrossRef Newnham, R.E.: Composite electroceramics. Ferroelectrics 68, 1–32 (1986)CrossRef
7.
Zurück zum Zitat Gururaja, T.R., Schulze, W.A., Cross, L.E., Newnham, R.E., Auld, B.A., Wang, Y.J.: Piezoelectric composite materials for ultrasonic transducer applications. Part I: resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Sonics Ultrasonics 32, 481–498 (1985)CrossRef Gururaja, T.R., Schulze, W.A., Cross, L.E., Newnham, R.E., Auld, B.A., Wang, Y.J.: Piezoelectric composite materials for ultrasonic transducer applications. Part I: resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Sonics Ultrasonics 32, 481–498 (1985)CrossRef
8.
Zurück zum Zitat Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)CrossRef Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009)CrossRef
9.
Zurück zum Zitat Gocha, A.: Smart materials make smart phones: how ceramics and glass contribute to the \$479B smartphone market. Am. Ceram. Soc. Bull. 97, 11–23 (2018) Gocha, A.: Smart materials make smart phones: how ceramics and glass contribute to the \$479B smartphone market. Am. Ceram. Soc. Bull. 97, 11–23 (2018)
10.
Zurück zum Zitat El Messiery, M.A., Hastings, G.W., Rakowski, S.: Ferro-electricity of dry cortical bone. J. Biomed. Eng. 1, 63–65 (1979)CrossRef El Messiery, M.A., Hastings, G.W., Rakowski, S.: Ferro-electricity of dry cortical bone. J. Biomed. Eng. 1, 63–65 (1979)CrossRef
11.
Zurück zum Zitat Gandhi, A.A., Wojtas, M., Lang, S.B., Kholkin, A.L., Tofail, S.A.M.: Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014)CrossRef Gandhi, A.A., Wojtas, M., Lang, S.B., Kholkin, A.L., Tofail, S.A.M.: Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014)CrossRef
12.
Zurück zum Zitat Tang, Y., Wu, C., Wu, Z., Hu, L., Zhang, W., Zhao, K.: Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci. Rep. 7, 43360 (2017)ADSCrossRef Tang, Y., Wu, C., Wu, Z., Hu, L., Zhang, W., Zhao, K.: Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci. Rep. 7, 43360 (2017)ADSCrossRef
13.
Zurück zum Zitat Jacob, J., More, N., Kalia, K., Kapusetti, G.: Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 38, 1–11 (2018)CrossRef Jacob, J., More, N., Kalia, K., Kapusetti, G.: Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 38, 1–11 (2018)CrossRef
14.
Zurück zum Zitat Silva, C.C., Thomazini, D., Pinheiro, A.G., Aranha, N., Figueiró, S.D., Góes, J.C., Sombra, A.S.B.: Collagen-hydroxyapatite films: piezoelectric properties. Mater. Sci. Eng. B 86, 210–218 (2001)CrossRef Silva, C.C., Thomazini, D., Pinheiro, A.G., Aranha, N., Figueiró, S.D., Góes, J.C., Sombra, A.S.B.: Collagen-hydroxyapatite films: piezoelectric properties. Mater. Sci. Eng. B 86, 210–218 (2001)CrossRef
15.
Zurück zum Zitat Miara, B., Rohan, E., Zidi, M., Labat, B.: Piezomaterials for bone regeneration design—homogenization approach. J. Mech. Phys. Solids. 53, 2529–2556 (2005)ADSMathSciNetMATHCrossRef Miara, B., Rohan, E., Zidi, M., Labat, B.: Piezomaterials for bone regeneration design—homogenization approach. J. Mech. Phys. Solids. 53, 2529–2556 (2005)ADSMathSciNetMATHCrossRef
16.
Zurück zum Zitat Bersani, A.M., Bersani, E., Dell’Acqua, G., Pedersen, M.G.: New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper. Contin. Mech. Thermodyn. 27, 659–684 (2015)ADSMathSciNetMATHCrossRef Bersani, A.M., Bersani, E., Dell’Acqua, G., Pedersen, M.G.: New trends and perspectives in nonlinear intracellular dynamics: one century from Michaelis–Menten paper. Contin. Mech. Thermodyn. 27, 659–684 (2015)ADSMathSciNetMATHCrossRef
17.
Zurück zum Zitat Mohammadkhah, M., Marinkovic, D., Zehn, M., Checa, S.: A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 127, 544–555 (2019)CrossRef Mohammadkhah, M., Marinkovic, D., Zehn, M., Checa, S.: A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 127, 544–555 (2019)CrossRef
18.
Zurück zum Zitat Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart, R., Otero, J.A., Bravo-Castillero, J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42, 5692–5714 (2005)MATHCrossRef Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart, R., Otero, J.A., Bravo-Castillero, J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42, 5692–5714 (2005)MATHCrossRef
19.
Zurück zum Zitat Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)MATHCrossRef Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)MATHCrossRef
20.
Zurück zum Zitat Guinovart-Díaz, R., Rodríguez-Ramos, R., Espinosa-Almeyda, Y., López-Realpozo, J.C., Dumont, S., Lebon, F., Conci, A.: An approach for modeling three-phase piezoelectric composites. Math. Methods Appl. Sci. 40, 3230–3248 (2017)ADSMathSciNetMATHCrossRef Guinovart-Díaz, R., Rodríguez-Ramos, R., Espinosa-Almeyda, Y., López-Realpozo, J.C., Dumont, S., Lebon, F., Conci, A.: An approach for modeling three-phase piezoelectric composites. Math. Methods Appl. Sci. 40, 3230–3248 (2017)ADSMathSciNetMATHCrossRef
21.
Zurück zum Zitat Panda, S.P., Panda, S.: Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int. J. Mech. Mater. Des. 11, 41–57 (2015)CrossRef Panda, S.P., Panda, S.: Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int. J. Mech. Mater. Des. 11, 41–57 (2015)CrossRef
22.
Zurück zum Zitat Qin, R.-S., Xiao, Y., Lan, H.: Numerical simulation of effective properties of 3D piezoelectric composites. J. Eng. 2014, 1–14 (2014)CrossRef Qin, R.-S., Xiao, Y., Lan, H.: Numerical simulation of effective properties of 3D piezoelectric composites. J. Eng. 2014, 1–14 (2014)CrossRef
23.
Zurück zum Zitat Wei, E.-B., Poon, Y.M., Shin, F.G., Gu, G.Q.: Effective properties of piezoelectric composites with periodic structure. Phys. Rev. B. 74, 14107 (2006)ADSCrossRef Wei, E.-B., Poon, Y.M., Shin, F.G., Gu, G.Q.: Effective properties of piezoelectric composites with periodic structure. Phys. Rev. B. 74, 14107 (2006)ADSCrossRef
24.
Zurück zum Zitat Piccardo, G., D’Annibale, F., Zulli, D.: On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday. Contin. Mech. Thermodyn. 27, 507–529 (2015)ADSMathSciNetMATHCrossRef Piccardo, G., D’Annibale, F., Zulli, D.: On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday. Contin. Mech. Thermodyn. 27, 507–529 (2015)ADSMathSciNetMATHCrossRef
25.
Zurück zum Zitat Zhou, Z., Ni, Y., Zhu, S., Tong, Z., Sun, J., Xu, X.: An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells. Compos. Struct. 207, 292–303 (2019)CrossRef Zhou, Z., Ni, Y., Zhu, S., Tong, Z., Sun, J., Xu, X.: An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells. Compos. Struct. 207, 292–303 (2019)CrossRef
26.
Zurück zum Zitat Hasanzadeh, M., Ansari, R., Hassanzadeh-Aghdam, M.K.: Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech. Mater. 129, 63–79 (2019)CrossRef Hasanzadeh, M., Ansari, R., Hassanzadeh-Aghdam, M.K.: Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech. Mater. 129, 63–79 (2019)CrossRef
27.
Zurück zum Zitat Xu, Y., Xiao, J., Jia, J., Qiu, P., Zhao, Q.: An analytical method for piezoelectric composites containing doubly periodic piezoelectric fibers with ring-shaped cross-section under antiplane shear and its application. Comput. Mater. Sci. 88, 7–13 (2014)CrossRef Xu, Y., Xiao, J., Jia, J., Qiu, P., Zhao, Q.: An analytical method for piezoelectric composites containing doubly periodic piezoelectric fibers with ring-shaped cross-section under antiplane shear and its application. Comput. Mater. Sci. 88, 7–13 (2014)CrossRef
28.
Zurück zum Zitat Ma, X., Wei, G.: Numerical prediction of effective electro-elastic properties of three-dimensional braided piezoelectric ceramic composites. Compos. Struct. 180, 420–428 (2017)CrossRef Ma, X., Wei, G.: Numerical prediction of effective electro-elastic properties of three-dimensional braided piezoelectric ceramic composites. Compos. Struct. 180, 420–428 (2017)CrossRef
29.
Zurück zum Zitat Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43, 790–825 (2005)MathSciNetMATHCrossRef Lee, J., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro-magneto-elastic composites. Int. J. Eng. Sci. 43, 790–825 (2005)MathSciNetMATHCrossRef
30.
Zurück zum Zitat McCartney, L.N., Crocker, L.E., Wright, L.: Verification of a 3D analytical model of multilayered piezoelectric systems using finite element analysis. J. Appl. Phys. 125, 184503 (2019)ADSCrossRef McCartney, L.N., Crocker, L.E., Wright, L.: Verification of a 3D analytical model of multilayered piezoelectric systems using finite element analysis. J. Appl. Phys. 125, 184503 (2019)ADSCrossRef
31.
Zurück zum Zitat Zhang, J., Eisenträger, J., Duczek, S., Song, C.: Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Compos. Struct. 235, 111744 (2020)CrossRef Zhang, J., Eisenträger, J., Duczek, S., Song, C.: Discrete modeling of fiber reinforced composites using the scaled boundary finite element method. Compos. Struct. 235, 111744 (2020)CrossRef
32.
Zurück zum Zitat Dubey, M.K., Panda, S.: Electromechanical properties and actuation capability of an extension mode piezoelectric fiber composite actuator with cylindrically periodic microstructure. Arch. Appl. Mech. 88, 2261–2281 (2018)ADSCrossRef Dubey, M.K., Panda, S.: Electromechanical properties and actuation capability of an extension mode piezoelectric fiber composite actuator with cylindrically periodic microstructure. Arch. Appl. Mech. 88, 2261–2281 (2018)ADSCrossRef
33.
Zurück zum Zitat Sreenivasa Prasath, S., Arockiarajan, A.: Analytical, numerical and experimental predictions of the effective electromechanical properties of macro-fiber composite (MFC). Sens. Actuators A Phys. 214, 31–44 (2014)CrossRef Sreenivasa Prasath, S., Arockiarajan, A.: Analytical, numerical and experimental predictions of the effective electromechanical properties of macro-fiber composite (MFC). Sens. Actuators A Phys. 214, 31–44 (2014)CrossRef
34.
Zurück zum Zitat Otero, J.A., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Monsivais, G.: Semi-analytical method for computing effective properties in elastic composite under imperfect contact. Int. J. Solids Struct. 50, 609–622 (2013)CrossRef Otero, J.A., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Monsivais, G.: Semi-analytical method for computing effective properties in elastic composite under imperfect contact. Int. J. Solids Struct. 50, 609–622 (2013)CrossRef
35.
Zurück zum Zitat Otero, J.A., Rodríguez-Ramos, R., Monsivais, G.: Computation of effective properties in elastic composites under imperfect contact with different inclusion shapes. Math. Methods Appl. Sci. 40, 3290–3310 (2017)ADSMathSciNetMATHCrossRef Otero, J.A., Rodríguez-Ramos, R., Monsivais, G.: Computation of effective properties in elastic composites under imperfect contact with different inclusion shapes. Math. Methods Appl. Sci. 40, 3290–3310 (2017)ADSMathSciNetMATHCrossRef
36.
Zurück zum Zitat Bakhvalov, N.S., Panasenko, G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer Academic, Dordrecht (1989)MATHCrossRef Bakhvalov, N.S., Panasenko, G.P.: Homogenization Averaging Processes in Periodic Media. Kluwer Academic, Dordrecht (1989)MATHCrossRef
37.
Zurück zum Zitat Pobedrya, B.E.: Mechanics of Composite Materials. Moscow State University Press, Moscow (1984).. ((in Russian))MATH Pobedrya, B.E.: Mechanics of Composite Materials. Moscow State University Press, Moscow (1984).. ((in Russian))MATH
38.
Zurück zum Zitat Breuer, K., Stommel, M.: RVE modelling of short fiber reinforced thermoplastics with discrete fiber orientation and fiber length distribution. SN Appl. Sci. 2, 91 (2020)CrossRef Breuer, K., Stommel, M.: RVE modelling of short fiber reinforced thermoplastics with discrete fiber orientation and fiber length distribution. SN Appl. Sci. 2, 91 (2020)CrossRef
39.
Zurück zum Zitat Chen, L., Gu, B., Zhou, J., Tao, J.: Study of the effectiveness of the RVEs for random short fiber reinforced elastomer composites. Fibers Polym. 20, 1467–1479 (2019)CrossRef Chen, L., Gu, B., Zhou, J., Tao, J.: Study of the effectiveness of the RVEs for random short fiber reinforced elastomer composites. Fibers Polym. 20, 1467–1479 (2019)CrossRef
40.
Zurück zum Zitat Penta, R., Raum, K., Grimal, Q., Schrof, S., Gerisch, A.: Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspir. Biomim. 11, 35004 (2016)CrossRef Penta, R., Raum, K., Grimal, Q., Schrof, S., Gerisch, A.: Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspir. Biomim. 11, 35004 (2016)CrossRef
41.
Zurück zum Zitat Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Rodríguez-Ramos, R.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—II. Piezoelectric and square symmetry. Mech. Mater. 33, 237–248 (2001)MATHCrossRef Bravo-Castillero, J., Guinovart-Díaz, R., Sabina, F.J., Rodríguez-Ramos, R.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—II. Piezoelectric and square symmetry. Mech. Mater. 33, 237–248 (2001)MATHCrossRef
42.
Zurück zum Zitat Sánchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Springer, Berlin (1980)MATH Sánchez-Palencia, E.: Non Homogeneous Media and Vibration Theory. Springer, Berlin (1980)MATH
43.
Zurück zum Zitat Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R.: Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II: Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids. 49, 1463–1479 (2001)ADSMATHCrossRef Sabina, F.J., Rodríguez-Ramos, R., Bravo-Castillero, J., Guinovart-Díaz, R.: Closed-form expressions for the effective coefficients of a fibre-reinforced composite with transversely isotropic constituents. II: Piezoelectric and hexagonal symmetry. J. Mech. Phys. Solids. 49, 1463–1479 (2001)ADSMATHCrossRef
44.
Zurück zum Zitat Rodríguez-Ramos, R., Sabina, F.J., Guinovart-Díaz, R., Bravo-Castillero, J.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—I. Elastic and square symmetry. Mech. Mater. 33, 223–235 (2001)MATHCrossRef Rodríguez-Ramos, R., Sabina, F.J., Guinovart-Díaz, R., Bravo-Castillero, J.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents—I. Elastic and square symmetry. Mech. Mater. 33, 223–235 (2001)MATHCrossRef
45.
Zurück zum Zitat Rodríguez-Ramos, R., de Medeiros, R., Guinovart-Díaz, R., Bravo-Castillero, J., Otero, J.A., Tita, V.: Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence. Compos. Struct. 99, 264–275 (2013)CrossRef Rodríguez-Ramos, R., de Medeiros, R., Guinovart-Díaz, R., Bravo-Castillero, J., Otero, J.A., Tita, V.: Different approaches for calculating the effective elastic properties in composite materials under imperfect contact adherence. Compos. Struct. 99, 264–275 (2013)CrossRef
46.
Zurück zum Zitat Lee, H.J., Zhang, S., Bar-Cohen, Y., Sherrit, S.: High temperature, high power piezoelectric composite transducers. Sensors 14, 14526–14552 (2014)ADSCrossRef Lee, H.J., Zhang, S., Bar-Cohen, Y., Sherrit, S.: High temperature, high power piezoelectric composite transducers. Sensors 14, 14526–14552 (2014)ADSCrossRef
47.
Zurück zum Zitat Gripp, J.A.B., Rade, D.A.: Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal Process. 112, 359–383 (2018)ADSCrossRef Gripp, J.A.B., Rade, D.A.: Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal Process. 112, 359–383 (2018)ADSCrossRef
48.
Zurück zum Zitat Cao, Y., Sha, A., Liu, Z., Li, J., Jiang, W.: Energy output of piezoelectric transducers and pavements under simulated traffic load. J. Clean. Prod. 279, 123508 (2021)CrossRef Cao, Y., Sha, A., Liu, Z., Li, J., Jiang, W.: Energy output of piezoelectric transducers and pavements under simulated traffic load. J. Clean. Prod. 279, 123508 (2021)CrossRef
49.
Zurück zum Zitat Pan, C.-T., Wang, S.-Y., Yen, C.-K., Kumar, A., Kuo, S.-W., Zheng, J.-L., Wen, Z.-H., Singh, R., Singh, S.P., Khan, M.T., Chaudhary, R.K., Dai, X., Chandra Kaushik, A., Wei, D.-Q., Shiue, Y.-L., Chang, W.-H.: Polyvinylidene fluoride-added ceramic powder composite near-field electrospinned piezoelectric fiber-based low-frequency dynamic sensors. ACS Omega 5, 17090–17101 (2020)CrossRef Pan, C.-T., Wang, S.-Y., Yen, C.-K., Kumar, A., Kuo, S.-W., Zheng, J.-L., Wen, Z.-H., Singh, R., Singh, S.P., Khan, M.T., Chaudhary, R.K., Dai, X., Chandra Kaushik, A., Wei, D.-Q., Shiue, Y.-L., Chang, W.-H.: Polyvinylidene fluoride-added ceramic powder composite near-field electrospinned piezoelectric fiber-based low-frequency dynamic sensors. ACS Omega 5, 17090–17101 (2020)CrossRef
50.
Zurück zum Zitat Ma, G., Li, Y., Wang, L., Zhang, J., Li, Z.: Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers. Constr. Build. Mater. 241, 117982 (2020)CrossRef Ma, G., Li, Y., Wang, L., Zhang, J., Li, Z.: Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers. Constr. Build. Mater. 241, 117982 (2020)CrossRef
51.
Zurück zum Zitat Omoniyi, O.A., Mansour, R., Reid, A., Liang, L., O’Leary, R., Windmill, J.F.C.: 3D-printing of a piezocomposite material with high filler content for transducer applications. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–3 (2020) Omoniyi, O.A., Mansour, R., Reid, A., Liang, L., O’Leary, R., Windmill, J.F.C.: 3D-printing of a piezocomposite material with high filler content for transducer applications. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–3 (2020)
52.
Zurück zum Zitat Assagra, Y.A.O., Altafim, R.A.P., do Carmo, J.P., Altafim, R.A.C., Rychkov, D., Wirges, W., Gerhard, R.: A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets. IEEE Trans. Dielectr. Electr. Insul. 27, 1668–1674 (2020)CrossRef Assagra, Y.A.O., Altafim, R.A.P., do Carmo, J.P., Altafim, R.A.C., Rychkov, D., Wirges, W., Gerhard, R.: A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets. IEEE Trans. Dielectr. Electr. Insul. 27, 1668–1674 (2020)CrossRef
53.
Zurück zum Zitat Rosen, V.B., Hobbs, L.W., Spector, M.: The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23, 921–928 (2002)CrossRef Rosen, V.B., Hobbs, L.W., Spector, M.: The ultrastructure of anorganic bovine bone and selected synthetic hyroxyapatites used as bone graft substitute materials. Biomaterials 23, 921–928 (2002)CrossRef
54.
Zurück zum Zitat Chen, P.-Y., Toroian, D., Price, P.A., McKittrick, J.: Minerals form a continuum phase in mature cancellous bone. Calcif. Tissue Int. 88, 351–361 (2011)CrossRef Chen, P.-Y., Toroian, D., Price, P.A., McKittrick, J.: Minerals form a continuum phase in mature cancellous bone. Calcif. Tissue Int. 88, 351–361 (2011)CrossRef
55.
Zurück zum Zitat Tiburtius, S., Schrof, S., Molnár, F., Varga, P., Peyrin, F., Grimal, Q., Raum, K., Gerisch, A.: On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech. Model. Mechanobiol. 13, 1003–1023 (2014)CrossRef Tiburtius, S., Schrof, S., Molnár, F., Varga, P., Peyrin, F., Grimal, Q., Raum, K., Gerisch, A.: On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech. Model. Mechanobiol. 13, 1003–1023 (2014)CrossRef
56.
Zurück zum Zitat Tofail, S.A.M., Haverty, D., Stanton, K.T., McMonagle, J.B.: Structural order and dielectric behaviour of hydroxyapatite. Ferroelectrics. 319, 117–123 (2005)CrossRef Tofail, S.A.M., Haverty, D., Stanton, K.T., McMonagle, J.B.: Structural order and dielectric behaviour of hydroxyapatite. Ferroelectrics. 319, 117–123 (2005)CrossRef
57.
Zurück zum Zitat Lees, S., Prostak, K.S., Ingle, V.K., Kjoller, K.: The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif. Tissue Int. 55, 180–189 (1994)CrossRef Lees, S., Prostak, K.S., Ingle, V.K., Kjoller, K.: The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif. Tissue Int. 55, 180–189 (1994)CrossRef
58.
Zurück zum Zitat Alexander, B., Daulton, T.L., Genin, G.M., Lipner, J., Pasteris, J.D., Wopenka, B., Thomopoulos, S.: The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J. R. Soc. Interface. 9, 1774–1786 (2012)CrossRef Alexander, B., Daulton, T.L., Genin, G.M., Lipner, J., Pasteris, J.D., Wopenka, B., Thomopoulos, S.: The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J. R. Soc. Interface. 9, 1774–1786 (2012)CrossRef
59.
Zurück zum Zitat Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., Rosenman, G.: Piezoelectric effect in human bones studied in nanometer scale. Nano Lett. 4, 1253–1256 (2004)ADSCrossRef Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., Rosenman, G.: Piezoelectric effect in human bones studied in nanometer scale. Nano Lett. 4, 1253–1256 (2004)ADSCrossRef
Metadaten
Titel
Semi-analytic finite element method applied to short-fiber-reinforced piezoelectric composites
verfasst von
L. E. Barraza de León
H. Camacho-Montes
Y. Espinosa-Almeyda
J. A. Otero
R. Rodríguez-Ramos
J. C. López-Realpozo
F. J. Sabina
Publikationsdatum
30.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 4/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-021-01016-0

Weitere Artikel der Ausgabe 4/2021

Continuum Mechanics and Thermodynamics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.