Skip to main content

2024 | OriginalPaper | Buchkapitel

Semi-supervised Cooperative Learning for Multiomics Data Fusion

verfasst von : Daisy Yi Ding, Xiaotao Shen, Michael Snyder, Robert Tibshirani

Erschienen in: Machine Learning for Multimodal Healthcare Data

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multiomics data fusion integrates diverse data modalities, ranging from transcriptomics to proteomics, to gain a comprehensive understanding of biological systems and enhance predictions on outcomes of interest related to disease phenotypes and treatment responses. Cooperative learning, a recently proposed method, unifies the commonly-used fusion approaches, including early and late fusion, and offers a systematic framework for leveraging the shared underlying relationships across omics to strengthen signals. However, the challenge of acquiring large-scale labeled data remains, and there are cases where multiomics data are available but in the absence of annotated labels. To harness the potential of unlabeled multiomcis data, we introduce semi-supervised cooperative learning. By utilizing an “agreement penalty”, our method incorporates the additional unlabeled data in the learning process and achieves consistently superior predictive performance on simulated data and a real multiomics study of aging. It offers an effective solution to multiomics data fusion in settings with both labeled and unlabeled data and maximizes the utility of available data resources, with the potential of significantly improving predictive models for diagnostics and therapeutics in an increasingly multiomics world.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We assume that the columns of X and Z have been standardized, and \(\boldsymbol{y}\) has mean 0 (hence we can omit the intercept). We use the commonly-used \(\ell _1\) penalties for illustration, while the framework generalizes to other penalty functions.
 
2
It was shown in [8] that there is generally no advantage to allowing different \(\lambda \) values for different modalities.
 
3
Traditional supervised learning models are not directly applicable to scenarios involving both labeled and unlabeled data.
 
Literatur
1.
Zurück zum Zitat An, S., et al.: Inhibition of 3-phosphoinositide-dependent protein kinase 1 (pdk1) can revert cellular senescence in human dermal fibroblasts. Proc. Natl. Acad. Sci. 117(49), 31535–31546 (2020)CrossRef An, S., et al.: Inhibition of 3-phosphoinositide-dependent protein kinase 1 (pdk1) can revert cellular senescence in human dermal fibroblasts. Proc. Natl. Acad. Sci. 117(49), 31535–31546 (2020)CrossRef
2.
Zurück zum Zitat Blacker, D., et al.: Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat. Genet. 19(4), 357–360 (1998)CrossRef Blacker, D., et al.: Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat. Genet. 19(4), 357–360 (1998)CrossRef
3.
Zurück zum Zitat Chabon, J.J., et al.: Integrating genomic features for non-invasive early lung cancer detection. Nature 580(7802), 245–251 (2020)CrossRef Chabon, J.J., et al.: Integrating genomic features for non-invasive early lung cancer detection. Nature 580(7802), 245–251 (2020)CrossRef
4.
Zurück zum Zitat Chaudhary, K., Poirion, O.B., Lu, L., Garmire, L.X.: Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24(6), 1248–1259 (2018)CrossRef Chaudhary, K., Poirion, O.B., Lu, L., Garmire, L.X.: Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res. 24(6), 1248–1259 (2018)CrossRef
6.
Zurück zum Zitat Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020) Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
7.
Zurück zum Zitat Choi, S.Y., et al.: C9orf72-als/ftd-associated poly (GR) binds atp5a1 and compromises mitochondrial function in vivo. Nat. Neurosci. 22(6), 851–862 (2019)CrossRef Choi, S.Y., et al.: C9orf72-als/ftd-associated poly (GR) binds atp5a1 and compromises mitochondrial function in vivo. Nat. Neurosci. 22(6), 851–862 (2019)CrossRef
8.
Zurück zum Zitat Ding, D.Y., Li, S., Narasimhan, B., Tibshirani, R.: Cooperative learning for multiview analysis. Proc. Natl. Acad. Sci. 119(38), e2202113119 (2022)CrossRef Ding, D.Y., Li, S., Narasimhan, B., Tibshirani, R.: Cooperative learning for multiview analysis. Proc. Natl. Acad. Sci. 119(38), e2202113119 (2022)CrossRef
9.
Zurück zum Zitat Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010)CrossRef Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010)CrossRef
10.
Zurück zum Zitat Garasto, S., et al.: The study of apoa1, apoc3 and apoa4 variability in healthy ageing people reveals another paradox in the oldest old subjects. Ann. Hum. Genet. 67(1), 54–62 (2003)CrossRef Garasto, S., et al.: The study of apoa1, apoc3 and apoa4 variability in healthy ageing people reveals another paradox in the oldest old subjects. Ann. Hum. Genet. 67(1), 54–62 (2003)CrossRef
11.
Zurück zum Zitat Gentles, A.J., et al.: Integrating tumor and stromal gene expression signatures with clinical indices for survival stratification of early-stage non-small cell lung cancer. JNCI: J. Natl. Cancer Inst. 107(10) (2015) Gentles, A.J., et al.: Integrating tumor and stromal gene expression signatures with clinical indices for survival stratification of early-stage non-small cell lung cancer. JNCI: J. Natl. Cancer Inst. 107(10) (2015)
12.
Zurück zum Zitat Goldberg, J., et al.: The mitochondrial ATP synthase is a shared drug target for aging and dementia. Aging Cell 17(2), e12715 (2018)CrossRef Goldberg, J., et al.: The mitochondrial ATP synthase is a shared drug target for aging and dementia. Aging Cell 17(2), e12715 (2018)CrossRef
13.
Zurück zum Zitat Hao, Y., et al.: Integrated analysis of multimodal single-cell data. Cell 184(13), 3573–3587 (2021)CrossRef Hao, Y., et al.: Integrated analysis of multimodal single-cell data. Cell 184(13), 3573–3587 (2021)CrossRef
14.
Zurück zum Zitat Karczewski, K.J., Snyder, M.P.: Integrative omics for health and disease. Nat. Rev. Genet. 19(5), 299 (2018)CrossRef Karczewski, K.J., Snyder, M.P.: Integrative omics for health and disease. Nat. Rev. Genet. 19(5), 299 (2018)CrossRef
15.
Zurück zum Zitat Khosla, P., et al.: Supervised contrastive learning. In: Proceedings of the 34th Conference on Neural Information Processing Systems (2020) Khosla, P., et al.: Supervised contrastive learning. In: Proceedings of the 34th Conference on Neural Information Processing Systems (2020)
16.
Zurück zum Zitat Kristensen, V.N., Lingjærde, O.C., Russnes, H.G., Vollan, H.K.M., Frigessi, A., Børresen-Dale, A.L.: Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer 14(5), 299–313 (2014)CrossRef Kristensen, V.N., Lingjærde, O.C., Russnes, H.G., Vollan, H.K.M., Frigessi, A., Børresen-Dale, A.L.: Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer 14(5), 299–313 (2014)CrossRef
17.
Zurück zum Zitat Lee, J.K., et al.: MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc. Natl. Acad. Sci. 110(29), 12066–12071 (2013)CrossRef Lee, J.K., et al.: MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc. Natl. Acad. Sci. 110(29), 12066–12071 (2013)CrossRef
18.
Zurück zum Zitat Ma, A., McDermaid, A., Xu, J., Chang, Y., Ma, Q.: Integrative methods and practical challenges for single-cell multi-omics. Trends Biotechnol. 38(9), 1007–1022 (2020)CrossRef Ma, A., McDermaid, A., Xu, J., Chang, Y., Ma, Q.: Integrative methods and practical challenges for single-cell multi-omics. Trends Biotechnol. 38(9), 1007–1022 (2020)CrossRef
19.
Zurück zum Zitat Perkins, B.A., et al.: Precision medicine screening using whole-genome sequencing and advanced imaging to identify disease risk in adults. Proc. Natl. Acad. Sci. 115(14), 3686–3691 (2018)CrossRef Perkins, B.A., et al.: Precision medicine screening using whole-genome sequencing and advanced imaging to identify disease risk in adults. Proc. Natl. Acad. Sci. 115(14), 3686–3691 (2018)CrossRef
20.
Zurück zum Zitat Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A., Kim, D.: Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 16(2), 85–97 (2015)CrossRef Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A., Kim, D.: Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 16(2), 85–97 (2015)CrossRef
21.
Zurück zum Zitat Robinson, D.R., et al.: Integrative clinical genomics of metastatic cancer. Nature 548(7667), 297–303 (2017)CrossRef Robinson, D.R., et al.: Integrative clinical genomics of metastatic cancer. Nature 548(7667), 297–303 (2017)CrossRef
22.
Zurück zum Zitat Shang, H., et al.: Role of MST1 in the regulation of autophagy and mitophagy: implications for aging-related diseases. J. Physiol. Biochem. 1–11 (2022) Shang, H., et al.: Role of MST1 in the regulation of autophagy and mitophagy: implications for aging-related diseases. J. Physiol. Biochem. 1–11 (2022)
23.
Zurück zum Zitat Tian, M., et al.: MYSM1 suppresses cellular senescence and the aging process to prolong lifespan. Adv. Sci. 7(22), 2001950 (2020)CrossRef Tian, M., et al.: MYSM1 suppresses cellular senescence and the aging process to prolong lifespan. Adv. Sci. 7(22), 2001950 (2020)CrossRef
24.
Zurück zum Zitat Wu, L., et al.: An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk. Nat. Commun. 11(1), 1–11 (2020)MathSciNet Wu, L., et al.: An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk. Nat. Commun. 11(1), 1–11 (2020)MathSciNet
25.
Zurück zum Zitat Yang, P., Hwa Yang, Y., Zhou, B.B., Zomaya, A.Y.: A review of ensemble methods in bioinformatics. Curr. Bioinform. 5(4), 296–308 (2010) Yang, P., Hwa Yang, Y., Zhou, B.B., Zomaya, A.Y.: A review of ensemble methods in bioinformatics. Curr. Bioinform. 5(4), 296–308 (2010)
26.
Zurück zum Zitat Yuan, Y., et al.: Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol. 32(7), 644–652 (2014)MathSciNetCrossRef Yuan, Y., et al.: Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol. 32(7), 644–652 (2014)MathSciNetCrossRef
27.
Zurück zum Zitat Zhao, J., et al.: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction. Sci. Rep. 9(1), 1–10 (2019) Zhao, J., et al.: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction. Sci. Rep. 9(1), 1–10 (2019)
28.
Zurück zum Zitat Zhou, W., et al.: Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 569(7758), 663–671 (2019)CrossRef Zhou, W., et al.: Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 569(7758), 663–671 (2019)CrossRef
Metadaten
Titel
Semi-supervised Cooperative Learning for Multiomics Data Fusion
verfasst von
Daisy Yi Ding
Xiaotao Shen
Michael Snyder
Robert Tibshirani
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47679-2_5

Premium Partner