Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.01.2015 | Original Article | Ausgabe 1/2017 Open Access

International Journal of Machine Learning and Cybernetics 1/2017

Semi-supervised self-training for decision tree classifiers

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 1/2017
Autoren:
Jafar Tanha, Maarten van Someren, Hamideh Afsarmanesh

Abstract

We consider semi-supervised learning, learning task from both labeled and unlabeled instances and in particular, self-training with decision tree learners as base learners. We show that standard decision tree learning as the base learner cannot be effective in a self-training algorithm to semi-supervised learning. The main reason is that the basic decision tree learner does not produce reliable probability estimation to its predictions. Therefore, it cannot be a proper selection criterion in self-training. We consider the effect of several modifications to the basic decision tree learner that produce better probability estimation than using the distributions at the leaves of the tree. We show that these modifications do not produce better performance when used on the labeled data only, but they do benefit more from the unlabeled data in self-training. The modifications that we consider are Naive Bayes Tree, a combination of No-pruning and Laplace correction, grafting, and using a distance-based measure. We then extend this improvement to algorithms for ensembles of decision trees and we show that the ensemble learner gives an extra improvement over the adapted decision tree learners.

Unsere Produktempfehlungen

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

International Journal of Machine Learning and Cybernetics 1/2017Zur Ausgabe

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

INDUSTRIE 4.0

Der Hype um Industrie 4.0 hat sich gelegt – nun geht es an die Umsetzung. Das Whitepaper von Protolabs zeigt Unternehmen und Führungskräften, wie sie die 4. Industrielle Revolution erfolgreich meistern. Es liegt an den Herstellern, die besten Möglichkeiten und effizientesten Prozesse bereitzustellen, die Unternehmen für die Herstellung von Produkten nutzen können. Lesen Sie mehr zu: Verbesserten Strukturen von Herstellern und Fabriken | Konvergenz zwischen Soft- und Hardwareautomatisierung | Auswirkungen auf die Neuaufstellung von Unternehmen | verkürzten Produkteinführungszeiten
Jetzt gratis downloaden!

Bildnachweise