Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.09.2014 | Special Issue Paper | Ausgabe 1/2017

Multimedia Systems 1/2017

Semi-supervised tensor learning for image classification

Zeitschrift:
Multimedia Systems > Ausgabe 1/2017
Autoren:
Jianguang Zhang, Yahong Han, Jianmin Jiang

Abstract

In this paper, we propose a new tensor-based representation algorithm for image classification. The algorithm is realized by learning the parameter tensor for image tensors. One novelty is that the parameter tensor is learned according to the Tucker tensor decomposition as the multiplication of a core tensor with a group of matrices for each order, which endows that the algorithm preserved the spatial information of image. We further extend the proposed tensor algorithm to a semi-supervised framework, in order to utilize both labeled and unlabeled images. The objective function can be solved by using the alternative optimization method, where at each iteration, we solve the typical ridge regression problem to obtain the closed form solution of the parameter along the corresponding order. Experimental results of gray and color image datasets show that our method outperforms several classification approaches. In particular, we find that our method can implement a high-quality classification performance when only few labeled training samples are provided.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Multimedia Systems 1/2017 Zur Ausgabe