Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

10.12.2016 | Ausgabe 4/2018

Artificial Intelligence Review 4/2018

Semi-supervised transfer discriminant analysis based on cross-domain mean constraint

Zeitschrift:
Artificial Intelligence Review > Ausgabe 4/2018
Autoren:
Shaofei Zang, Yuhu Cheng, Xuesong Wang, Qiang Yu
Wichtige Hinweise
This work was supported by the National Natural Science Foundation of China under Grant 61273143, by the Fundamental Research Funds for the Central Universities under Grant 2013RC12.

Abstract

In this paper, a novel semi-supervised feature extraction algorithm, i.e., semi-supervised transfer discriminant analysis (STDA) with knowledge transfer capability is proposed, based on the traditional algorithm that cannot get adapted in the change of the learning environment. By using both the pseudo label information from target domain samples and the actual label information from source domain samples in the label iterative refinement process, not only the between-class scatter is maximized while that within-class scatter is minimized, but also the original space structure is maintained via Laplacian matrix, and the distribution difference is reduced by using maximum mean discrepancy as well. Moreover, semi-supervised transfer discriminant analysis based on cross-domain mean constraint (STDA-CMC) is proposed. In this algorithm, the cross-domain mean constraint term is incorporated into STDA, such that knowledge transfer between domains is facilitated by making source and target samples after being projected are located more closely in the low-dimensional feature subspace. The proposed algorithm is proved efficient and feasible from experiments on several datasets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2018

Artificial Intelligence Review 4/2018Zur Ausgabe

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise