Skip to main content
Erschienen in:

2015 | Online First | Buchkapitel

Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton’s Jelly into Induced Pluripotent Stem Cells

verfasst von : Cristian Miere, Liani Devito, Dusko Ilic

Erschienen in: Methods in Molecular Biology™

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In an attempt to bring pluripotent stem cell biology closer to reaching its full potential, many groups have focused on improving reprogramming protocols over the past several years. The episomal modified Sendai virus-based vector has emerged as one of the most practical ones. Here we describe reprogramming of mesenchymal stromal/stem cells (MSC) derived from umbilical cord Wharton’s Jelly into induced pluripotent stem cells (iPSC) using genome non-integrating Sendai virus-based vectors. The detailed protocols of iPSC colony cryopreservation (vitrification) and adaption to feeder-free culture conditions are also included.
Literatur
2.
Zurück zum Zitat Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89:655–661PubMedCrossRef Inoue H, Yamanaka S (2011) The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89:655–661PubMedCrossRef
3.
Zurück zum Zitat Egawa N, Kitaoka S, Tsukita K et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104PubMed Egawa N, Kitaoka S, Tsukita K et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104PubMed
4.
Zurück zum Zitat Hou Z, Zhang J, Schwartz MP et al (2013) A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Res Ther 4(Suppl 1):S12PubMedPubMedCentralCrossRef Hou Z, Zhang J, Schwartz MP et al (2013) A human pluripotent stem cell platform for assessing developmental neural toxicity screening. Stem Cell Res Ther 4(Suppl 1):S12PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Paşca SP, Portmann T, Voineagu I et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17:1657–1662PubMedPubMedCentralCrossRef Paşca SP, Portmann T, Voineagu I et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17:1657–1662PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691–705PubMedPubMedCentralCrossRef Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691–705PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRef Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRef
8.
Zurück zum Zitat Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19:635–638PubMedPubMedCentralCrossRef Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19:635–638PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Fusaki N, Ban H, Nishiyama A (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362PubMedPubMedCentralCrossRef Fusaki N, Ban H, Nishiyama A (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Nishishita N, Shikamura M, Takenaka C et al (2012) Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state. PLoS One 7(6):e38389PubMedPubMedCentralCrossRef Nishishita N, Shikamura M, Takenaka C et al (2012) Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naïve state. PLoS One 7(6):e38389PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Ono M, Hamada Y, Horiuchi Y et al (2012) Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One 7:e42855PubMedPubMedCentralCrossRef Ono M, Hamada Y, Horiuchi Y et al (2012) Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One 7:e42855PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Kudva YC, Ohmine S, Greder LV et al (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1:451–461PubMedPubMedCentralCrossRef Kudva YC, Ohmine S, Greder LV et al (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1:451–461PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Jin ZB, Okamoto S, Xiang P et al (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling Jin ZB, Okamoto S, Xiang P et al (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling
15.
Zurück zum Zitat Merling RK, Sweeney CL, Choi U et al (2013) Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 121:e98–e107PubMedPubMedCentralCrossRef Merling RK, Sweeney CL, Choi U et al (2013) Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood 121:e98–e107PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Wakao H, Yoshikiyo K, Koshimizu U et al (2013) Expansion of functional human mucosal-associated invariant T cells via reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12:546–558PubMedCrossRef Wakao H, Yoshikiyo K, Koshimizu U et al (2013) Expansion of functional human mucosal-associated invariant T cells via reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12:546–558PubMedCrossRef
17.
Zurück zum Zitat Kim DW, Staples M, Shinozuka K et al (2013) Wharton’s Jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712PubMedPubMedCentralCrossRef Kim DW, Staples M, Shinozuka K et al (2013) Wharton’s Jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433PubMedCrossRef Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433PubMedCrossRef
20.
Zurück zum Zitat Badraiq H, Devito L, Ilic D (2014) Isolation and expansion of mesenchymal stromal/stem cells from umbilical cord under chemically defined conditions. Methods Mol Biol [Epub ahead of print] Badraiq H, Devito L, Ilic D (2014) Isolation and expansion of mesenchymal stromal/stem cells from umbilical cord under chemically defined conditions. Methods Mol Biol [Epub ahead of print]
21.
Zurück zum Zitat Devito L, Badraiq H, Galleu A et al (2014) Wharton’s Jelly MSC derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1+ subpopulation. Regen Med (in press) Devito L, Badraiq H, Galleu A et al (2014) Wharton’s Jelly MSC derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1+ subpopulation. Regen Med (in press)
22.
Zurück zum Zitat Reubinoff BE, Pera MF, Vajta G et al (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194PubMedCrossRef Reubinoff BE, Pera MF, Vajta G et al (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194PubMedCrossRef
23.
Zurück zum Zitat Ilic D, Stephenson E, Wood V et al (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14:122–128PubMedCrossRef Ilic D, Stephenson E, Wood V et al (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy 14:122–128PubMedCrossRef
24.
Zurück zum Zitat Stephenson E, Jacquet L, Miere C et al (2012) Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 7:1366–1381PubMedCrossRef Stephenson E, Jacquet L, Miere C et al (2012) Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc 7:1366–1381PubMedCrossRef
Metadaten
Titel
Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton’s Jelly into Induced Pluripotent Stem Cells
verfasst von
Cristian Miere
Liani Devito
Dusko Ilic
Copyright-Jahr
2015
Verlag
Springer New York
DOI
https://doi.org/10.1007/7651_2014_163