Skip to main content

2018 | OriginalPaper | Buchkapitel

33. Sensation of Sound Intensity and Perception of Loudness

verfasst von : Albrecht Schneider

Erschienen in: Springer Handbook of Systematic Musicology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is on sensation of sound intensity and perception of loudness. Since some of the relevant matter (on scaling concepts of loudness) has been presented in Chap. 30, and because a considerable portion of research on loudness is done outside musical contexts (namely, in industrial and environmental noise control as well as in audiology), this chapter condenses facts and models more than the previous two on pitch and timbre respectively. Section 33.1 of this chapter offers the physical and physiological basis of sound intensity sensation while Sect. 33.2 discusses features of some models of loudness sensation that have been established in psychoacoustics over the past decades. Since these models were originally designed for stationary sound signals and levels, and have been tested mostly in lab situations, they cannot adequately cover a range of real-world sound types found in natural or technical environments. In music genres such as techno presented in discos, or heavy metal performed in live music venues or at open air festivals to audiences at very high sound pressure levels, sound is heavily processed in regard to dynamics and spectral energy, which calls for appropriate measurement and assessment of sensory effects. Different from perception of pitch (where samples of subjects respond more or less in similar ways to certain types of sound signals), perception of loudness shows a high degree of variability even within groups of musically trained subjects reflecting their musical background and preferences (Sect. 33.3). Recent empirical evidence demonstrates that subjects judge loudness for various musical genres on a category scale (from very soft to very loud), however, the center (relative to loudness level and loudness scales) and the range of each category differ considerably, for individual subjects.
Finally, there is a concluding section (Sect. 33.4) in which some of the major topics and issues discussed in Chaps. 30–33 of Part D are summed up. In addition, a tentative model of the interrelationship of pitch, timbre and loudness perception is sketched.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
33.1
Zurück zum Zitat E. Shaw, M. Vaillancourt: Transformation of sound pressure level from the free field to the eardrum in numerical form, J. Acoust. Soc. Am. 78, 1120–1123 (1985)CrossRef E. Shaw, M. Vaillancourt: Transformation of sound pressure level from the free field to the eardrum in numerical form, J. Acoust. Soc. Am. 78, 1120–1123 (1985)CrossRef
33.2
Zurück zum Zitat D. Keefe, J. Bulen, K. Hoberg Arehart, E. Burns: Ear-canal impedance and reflection coefficient in human infants and adults, J. Acoust. Soc. Am. 94, 2617–2638 (1993)CrossRef D. Keefe, J. Bulen, K. Hoberg Arehart, E. Burns: Ear-canal impedance and reflection coefficient in human infants and adults, J. Acoust. Soc. Am. 94, 2617–2638 (1993)CrossRef
33.3
Zurück zum Zitat S. Voss, J. Allen: Measurement of acoustic impedance and reflectance in the human ear canal, J. Acoust. Soc. Am. 95, 372–384 (1994)CrossRef S. Voss, J. Allen: Measurement of acoustic impedance and reflectance in the human ear canal, J. Acoust. Soc. Am. 95, 372–384 (1994)CrossRef
33.4
Zurück zum Zitat R. Aibara, J. Welch, S. Puria, R. Goode: Human middle-ear transfer function and cochlear input impedance, Hearing Res. 152, 100–109 (2001)CrossRef R. Aibara, J. Welch, S. Puria, R. Goode: Human middle-ear transfer function and cochlear input impedance, Hearing Res. 152, 100–109 (2001)CrossRef
33.5
Zurück zum Zitat J. Rosowski: The effects of external and middle-ear filtering on auditory threshold and noise-induced hearing loss, J. Acoust. Soc. Am. 90, 124–135 (1991)CrossRef J. Rosowski: The effects of external and middle-ear filtering on auditory threshold and noise-induced hearing loss, J. Acoust. Soc. Am. 90, 124–135 (1991)CrossRef
33.6
Zurück zum Zitat H. Fletcher, W. Munson: Loudness, its definition, measurement and calculation, J. Acoust. Soc. Am. 5, 82–108 (1933)CrossRef H. Fletcher, W. Munson: Loudness, its definition, measurement and calculation, J. Acoust. Soc. Am. 5, 82–108 (1933)CrossRef
33.7
Zurück zum Zitat W. Rhode, A. Recio: Study of mechanical motions in the basal region of the chinchilla cochlea, J. Acoust. Soc. Am. 107, 3317–3332 (2000)CrossRef W. Rhode, A. Recio: Study of mechanical motions in the basal region of the chinchilla cochlea, J. Acoust. Soc. Am. 107, 3317–3332 (2000)CrossRef
33.8
Zurück zum Zitat I. Russell, K. Nielsen: The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane, Proc. Nat. Acad. Sci. 94, 2660–2664 (1997)CrossRef I. Russell, K. Nielsen: The location of the cochlear amplifier: Spatial representation of a single tone on the guinea pig basilar membrane, Proc. Nat. Acad. Sci. 94, 2660–2664 (1997)CrossRef
33.9
Zurück zum Zitat M. Ruggero, N. Rich, A. Recio, S. Narayan, L. Robles: Basilar-membrane responses to tones at the base of the chinchilla cochlea, J. Acoust. Soc. Am. 101, 2151–2163 (1997)CrossRef M. Ruggero, N. Rich, A. Recio, S. Narayan, L. Robles: Basilar-membrane responses to tones at the base of the chinchilla cochlea, J. Acoust. Soc. Am. 101, 2151–2163 (1997)CrossRef
33.10
Zurück zum Zitat C. Shera: Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics, J. Acoust. Soc. Am. 110, 332–348 (2001)CrossRef C. Shera: Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics, J. Acoust. Soc. Am. 110, 332–348 (2001)CrossRef
33.11
Zurück zum Zitat S. Gelfand: Hearing. An Introduction to Psychological and Physiological Acoustics, 4th edn. (Dekker, New York 2004) S. Gelfand: Hearing. An Introduction to Psychological and Physiological Acoustics, 4th edn. (Dekker, New York 2004)
33.12
Zurück zum Zitat E. Zwicker, H. Fastl: Psychoacoustics, Facts and Models, 2nd edn. (Springer, Berlin 1999)CrossRef E. Zwicker, H. Fastl: Psychoacoustics, Facts and Models, 2nd edn. (Springer, Berlin 1999)CrossRef
33.13
Zurück zum Zitat G. Yates, I. Winter, D. Robertson: Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range, Hearing Res. 45, 203–219 (1990)CrossRef G. Yates, I. Winter, D. Robertson: Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range, Hearing Res. 45, 203–219 (1990)CrossRef
33.14
Zurück zum Zitat B. Moore: Frequency analysis and masking. In: Hearing, ed. by B. Moore (Academic, San Diego 1995) pp. 161–205CrossRef B. Moore: Frequency analysis and masking. In: Hearing, ed. by B. Moore (Academic, San Diego 1995) pp. 161–205CrossRef
33.15
Zurück zum Zitat E. Relkin, J. Doucet: Is loudness simply proportional to the auditory nerve spike count?, J. Acoust. Soc. Am. 101, 2735–2740 (1997)CrossRef E. Relkin, J. Doucet: Is loudness simply proportional to the auditory nerve spike count?, J. Acoust. Soc. Am. 101, 2735–2740 (1997)CrossRef
33.16
Zurück zum Zitat J. Doucet, E. Relkin: Neural contributions to the peristimulus compound action potential: Implications for measuring the growth of the auditory nerve spike count as a function of stimulus intensity, J. Acoust. Soc. Am. 101, 2720–2734 (1997)CrossRef J. Doucet, E. Relkin: Neural contributions to the peristimulus compound action potential: Implications for measuring the growth of the auditory nerve spike count as a function of stimulus intensity, J. Acoust. Soc. Am. 101, 2720–2734 (1997)CrossRef
33.17
Zurück zum Zitat J.O. Pickles: Introduction to the Physiology of Hearing, 3rd edn. (Emerald, Binkley 2008) J.O. Pickles: Introduction to the Physiology of Hearing, 3rd edn. (Emerald, Binkley 2008)
33.18
Zurück zum Zitat Chr Plack, R. Carlyon: Loudness perception and intensity coding. In: Hearing, ed. by B. Moore (Academic, San Diego 1995) pp. 123–160CrossRef Chr Plack, R. Carlyon: Loudness perception and intensity coding. In: Hearing, ed. by B. Moore (Academic, San Diego 1995) pp. 123–160CrossRef
33.19
Zurück zum Zitat St Uppenkamp, M. Röhl: Human auditory neuroimaging of intensity and loudness, Hearing Res. 307, 65–73 (2014)CrossRef St Uppenkamp, M. Röhl: Human auditory neuroimaging of intensity and loudness, Hearing Res. 307, 65–73 (2014)CrossRef
33.20
Zurück zum Zitat N. Durlach, L. Braida: Intensity perception. I. Preliminary theory of intensity resolution, J. Acoust. Soc. Am. 46, 372–383 (1969)CrossRef N. Durlach, L. Braida: Intensity perception. I. Preliminary theory of intensity resolution, J. Acoust. Soc. Am. 46, 372–383 (1969)CrossRef
33.21
Zurück zum Zitat R. Schlauch: Loudness. In: Ecological Psychoacoustics, ed. by J. Neuhoff (Elsevier, San Diego 2004) pp. 317–345 R. Schlauch: Loudness. In: Ecological Psychoacoustics, ed. by J. Neuhoff (Elsevier, San Diego 2004) pp. 317–345
33.22
Zurück zum Zitat L. Marks: Binaural summation of the loudness of pure tones, J. Acoust. Soc. Am. 64, 107–113 (1978)CrossRef L. Marks: Binaural summation of the loudness of pure tones, J. Acoust. Soc. Am. 64, 107–113 (1978)CrossRef
33.23
Zurück zum Zitat V. Sivonen, W. Ellermeier: Binaural loudness. In: Loudness, ed. by M. Florentine (Springer, New York 2011) pp. 169–197CrossRef V. Sivonen, W. Ellermeier: Binaural loudness. In: Loudness, ed. by M. Florentine (Springer, New York 2011) pp. 169–197CrossRef
33.24
Zurück zum Zitat J. Marozeau, M. Epstein, M. Florentine, B. Daley: A test of the binaural equal-loudness-ratio hypothesis for tones, J. Acoust. Soc. Am. 120, 3870–3877 (2006)CrossRef J. Marozeau, M. Epstein, M. Florentine, B. Daley: A test of the binaural equal-loudness-ratio hypothesis for tones, J. Acoust. Soc. Am. 120, 3870–3877 (2006)CrossRef
33.25
Zurück zum Zitat M. Florentine, M. Epstein: To honour Stevens and to repeal his law. In: Fechner Day 2006. Proc. 22nd Annu. Meet. Int. Soc. Psychophys., ed. by D. Kornbrot, R. Msetfi, A. MacRae (Univ. of Hertfordshire Press, Hatfield 2006) pp. 37–41 M. Florentine, M. Epstein: To honour Stevens and to repeal his law. In: Fechner Day 2006. Proc. 22nd Annu. Meet. Int. Soc. Psychophys., ed. by D. Kornbrot, R. Msetfi, A. MacRae (Univ. of Hertfordshire Press, Hatfield 2006) pp. 37–41
33.26
Zurück zum Zitat H. Fletcher: Loudness, masking and their relation to the hearing process and the problem of noise measurement, J. Acoust. Soc. Am. 9, 275–293 (1938)CrossRef H. Fletcher: Loudness, masking and their relation to the hearing process and the problem of noise measurement, J. Acoust. Soc. Am. 9, 275–293 (1938)CrossRef
33.27
Zurück zum Zitat H. Bauch: Die Bedeutung der Frequenzgruppe für die Lautheit von Tönen, Acustica 6, 40–45 (1956) H. Bauch: Die Bedeutung der Frequenzgruppe für die Lautheit von Tönen, Acustica 6, 40–45 (1956)
33.28
Zurück zum Zitat E. Zwicker, G. Flottorp, S. Stevens: Critical bands with loudness summation, J. Acoust. Soc. Am. 29, 548–557 (1957)CrossRef E. Zwicker, G. Flottorp, S. Stevens: Critical bands with loudness summation, J. Acoust. Soc. Am. 29, 548–557 (1957)CrossRef
33.29
Zurück zum Zitat E. Zwicker, B. Scharf: A Model of loudness summation, Psych. Rev. 72, 3–26 (1965)CrossRef E. Zwicker, B. Scharf: A Model of loudness summation, Psych. Rev. 72, 3–26 (1965)CrossRef
33.30
Zurück zum Zitat W. Hartmann: Signals, Sound and Sensation (Springer, New York 1998) W. Hartmann: Signals, Sound and Sensation (Springer, New York 1998)
33.31
Zurück zum Zitat E. Zwicker, E. Terhardt: Analytical expressions for critical-band rate and critical bandwidth as a function of frequency, J. Acoust. Soc. Am. 68, 1523–1525 (1980)CrossRef E. Zwicker, E. Terhardt: Analytical expressions for critical-band rate and critical bandwidth as a function of frequency, J. Acoust. Soc. Am. 68, 1523–1525 (1980)CrossRef
33.32
Zurück zum Zitat B. Moore, B. Glasberg: Suggested formulae for calculating auditory-filter bandwidths and excitation patterns, J. Acoust. Soc. Am. 74, 750–753 (1983)CrossRef B. Moore, B. Glasberg: Suggested formulae for calculating auditory-filter bandwidths and excitation patterns, J. Acoust. Soc. Am. 74, 750–753 (1983)CrossRef
33.33
33.34
Zurück zum Zitat A. Schneider, V. Tsatsishvili: Perception of intervals at very low frequencies: Some experimental findings. In: Systematic Musicology: Empirical and Theoretical Studies, ed. by A. Schneider, A. von Ruschkowski (Lang, Frankfurt 2011) pp. 99–125 A. Schneider, V. Tsatsishvili: Perception of intervals at very low frequencies: Some experimental findings. In: Systematic Musicology: Empirical and Theoretical Studies, ed. by A. Schneider, A. von Ruschkowski (Lang, Frankfurt 2011) pp. 99–125
33.35
Zurück zum Zitat R. Meddis, M. Hewitt: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification, J. Acoust. Soc. Am. 89, 2866–2882 (1991)CrossRef R. Meddis, M. Hewitt: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification, J. Acoust. Soc. Am. 89, 2866–2882 (1991)CrossRef
33.36
Zurück zum Zitat R. Meddis, M. Hewitt: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity, J. Acoust. Soc. Am. 89, 2883–2894 (1991)CrossRef R. Meddis, M. Hewitt: Virtual pitch and phase sensitivity of a computer model of the auditory periphery. II: Phase sensitivity, J. Acoust. Soc. Am. 89, 2883–2894 (1991)CrossRef
33.37
Zurück zum Zitat R. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, M. Allerhand: Complex sounds and auditory images, Adv. Biosci. 83, 429–443 (1992) R. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, M. Allerhand: Complex sounds and auditory images, Adv. Biosci. 83, 429–443 (1992)
33.38
Zurück zum Zitat R. Patterson, M. Allerhand, C. Giguère: Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform, J. Acoust. Soc. Am. 98, 1890–1894 (1995)CrossRef R. Patterson, M. Allerhand, C. Giguère: Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform, J. Acoust. Soc. Am. 98, 1890–1894 (1995)CrossRef
33.39
33.40
Zurück zum Zitat B. Glasberg, B. Moore: Derivation of auditory filter shapes from notched noise data, Hearing Res. 47, 103–113 (1990)CrossRef B. Glasberg, B. Moore: Derivation of auditory filter shapes from notched noise data, Hearing Res. 47, 103–113 (1990)CrossRef
33.41
Zurück zum Zitat B. Moore: Basic psychophysics of human spectral processing. In: Auditory Spectral Processing, Intern. Rev. Neurobiol., Vol. 70, ed. by M. Malmierca, D. Irvine (Elsevier, Amsterdam 2005) pp. 49–86CrossRef B. Moore: Basic psychophysics of human spectral processing. In: Auditory Spectral Processing, Intern. Rev. Neurobiol., Vol. 70, ed. by M. Malmierca, D. Irvine (Elsevier, Amsterdam 2005) pp. 49–86CrossRef
33.42
Zurück zum Zitat M. Slaney: An efficient implementation of the Patterson–Holdsworth auditory filter bank, Apple Comput. Tech. Report 35 (1993) M. Slaney: An efficient implementation of the Patterson–Holdsworth auditory filter bank, Apple Comput. Tech. Report 35 (1993)
33.43
Zurück zum Zitat T. Lin, J. Guinan: Auditory nerve fiber responses to high-level clicks: Interference patterns indicate that excitation is due to the combination of multiple drives, J. Acoust. Soc. Am. 107, 2615–2630 (2000)CrossRef T. Lin, J. Guinan: Auditory nerve fiber responses to high-level clicks: Interference patterns indicate that excitation is due to the combination of multiple drives, J. Acoust. Soc. Am. 107, 2615–2630 (2000)CrossRef
33.45
Zurück zum Zitat T. Poulsen: Loudness of tone pulses in a free field, J. Acoust. Soc. Am. 69, 1786–1790 (1981)CrossRef T. Poulsen: Loudness of tone pulses in a free field, J. Acoust. Soc. Am. 69, 1786–1790 (1981)CrossRef
33.46
Zurück zum Zitat B. Glasberg, B. Moore: A model of loudness applicable to time-varying sounds, J. Audio Eng. Soc. 50, 331–342 (2002) B. Glasberg, B. Moore: A model of loudness applicable to time-varying sounds, J. Audio Eng. Soc. 50, 331–342 (2002)
33.47
Zurück zum Zitat J. Chalupper, H. Fastl: Dynamic loudness model (DLM) for normal and hearing-impaired listeners, Acustica 88, 378–386 (2002) J. Chalupper, H. Fastl: Dynamic loudness model (DLM) for normal and hearing-impaired listeners, Acustica 88, 378–386 (2002)
33.48
Zurück zum Zitat R. Sottek: A hearing model approach to time-varying loudness, Acustica 102, 725–744 (2016)CrossRef R. Sottek: A hearing model approach to time-varying loudness, Acustica 102, 725–744 (2016)CrossRef
33.49
Zurück zum Zitat J. Hots, J. Rennies, J. Verhey: Modelling temporal integration of loudness, Acustica 100, 184–187 (2014)CrossRef J. Hots, J. Rennies, J. Verhey: Modelling temporal integration of loudness, Acustica 100, 184–187 (2014)CrossRef
33.50
Zurück zum Zitat J. Rennies, M. Wächtler, J. Hots, J. Verhey: Spectro-temporal characteristics affecting the loudness of technical sounds: Data and model predictions, Acustica 101, 114–1156 (2015) J. Rennies, M. Wächtler, J. Hots, J. Verhey: Spectro-temporal characteristics affecting the loudness of technical sounds: Data and model predictions, Acustica 101, 114–1156 (2015)
33.51
Zurück zum Zitat J. Rennies, J. Verhey, H. Fastl: Comparison of loudness models for time-varying sounds, Acustica 96, 383–396 (2010)CrossRef J. Rennies, J. Verhey, H. Fastl: Comparison of loudness models for time-varying sounds, Acustica 96, 383–396 (2010)CrossRef
33.52
Zurück zum Zitat B. Moore, B. Glasberg: Modeling binaural loudness, J. Acoust. Soc. Am. 121, 1604–1612 (2007)CrossRef B. Moore, B. Glasberg: Modeling binaural loudness, J. Acoust. Soc. Am. 121, 1604–1612 (2007)CrossRef
33.53
Zurück zum Zitat A. Schneider, A. von Ruschkowski: Techno, decibels, and politics: An empirical study of modern dance music productions, sound pressure levels, and loudness perception. In: Systematic Musicology: Empirical and Theoretical Studies, ed. by A. Schneider, A. von Ruschkowski (Lang, Frankfurt/M. 2011) pp. 13–62 A. Schneider, A. von Ruschkowski: Techno, decibels, and politics: An empirical study of modern dance music productions, sound pressure levels, and loudness perception. In: Systematic Musicology: Empirical and Theoretical Studies, ed. by A. Schneider, A. von Ruschkowski (Lang, Frankfurt/M. 2011) pp. 13–62
33.54
Zurück zum Zitat A. von Ruschkowski, A. Schneider: Schallstruktur und potentielle Risiken für das Gehör: Eine empirische Studie in einer Hamburger Diskothek, Z. Audiol. 51, 115–121 (2012) A. von Ruschkowski, A. Schneider: Schallstruktur und potentielle Risiken für das Gehör: Eine empirische Studie in einer Hamburger Diskothek, Z. Audiol. 51, 115–121 (2012)
33.55
Zurück zum Zitat M. Florentine (Ed.): Loudness (Springer, New York 2011) M. Florentine (Ed.): Loudness (Springer, New York 2011)
33.56
Zurück zum Zitat G. Grimm, V. Hohmann, J. Verhey: Loudness of fluctuating sounds, Acta Acust. united with Acust. 88, 359–368 (2002) G. Grimm, V. Hohmann, J. Verhey: Loudness of fluctuating sounds, Acta Acust. united with Acust. 88, 359–368 (2002)
33.57
Zurück zum Zitat H. Gockel, B. Moore, R. Patterson: Influence of component phase on the loudness of complex tones, Acustica 88, 369–377 (2002) H. Gockel, B. Moore, R. Patterson: Influence of component phase on the loudness of complex tones, Acustica 88, 369–377 (2002)
33.58
Zurück zum Zitat N. Todd, F. Cody: Vestibular responses to loud dance music: A physiological basis of the ‘‘rock’n’roll threshold’’?, J. Acoust. Soc. Am. 107, 496–500 (2000)CrossRef N. Todd, F. Cody: Vestibular responses to loud dance music: A physiological basis of the ‘‘rock’n’roll threshold’’?, J. Acoust. Soc. Am. 107, 496–500 (2000)CrossRef
33.59
Zurück zum Zitat N. Todd: Evidence for a behavioural significance of saccular arousal sensitivity in humans, J. Acoust. Soc. Am. 110, 380–390 (2001)CrossRef N. Todd: Evidence for a behavioural significance of saccular arousal sensitivity in humans, J. Acoust. Soc. Am. 110, 380–390 (2001)CrossRef
33.60
Zurück zum Zitat W. Babisch, B. Bohn: Schallpegel in Diskotheken und bei Musikveranstaltungen. Part II (Umweltbundesamt, Berlin 2000) W. Babisch, B. Bohn: Schallpegel in Diskotheken und bei Musikveranstaltungen. Part II (Umweltbundesamt, Berlin 2000)
33.61
Zurück zum Zitat W. Babisch, B. Bohn: Schallpegel in Diskotheken und bei Musikveranstaltungen. Part III (Umweltbundesamt, Berlin 2000) W. Babisch, B. Bohn: Schallpegel in Diskotheken und bei Musikveranstaltungen. Part III (Umweltbundesamt, Berlin 2000)
33.63
Zurück zum Zitat L. Braida, J. Lim, J. Berliner, N. Durlach, W. Rabinowitz, S. Purks: Intensity perception. XIII. Perceptual anchor model of context coding, J. Acoust. Soc. Am. 76, 722–731 (1984)CrossRef L. Braida, J. Lim, J. Berliner, N. Durlach, W. Rabinowitz, S. Purks: Intensity perception. XIII. Perceptual anchor model of context coding, J. Acoust. Soc. Am. 76, 722–731 (1984)CrossRef
33.64
Zurück zum Zitat R.M. Warren: Subjective loudness and its physical correlate, Acustica 37, 334–346 (1977) R.M. Warren: Subjective loudness and its physical correlate, Acustica 37, 334–346 (1977)
33.65
Zurück zum Zitat R. Warren: Auditory Perception. An Analysis and Synthesis, 3rd edn. (Cambridge Univ. Press, Cambridge 2008)CrossRef R. Warren: Auditory Perception. An Analysis and Synthesis, 3rd edn. (Cambridge Univ. Press, Cambridge 2008)CrossRef
33.66
Zurück zum Zitat H. von Helmholtz: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (Vieweg, Braunschweig 1863), 3rd edn. 1870, 6th edn. 1913MATH H. von Helmholtz: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (Vieweg, Braunschweig 1863), 3rd edn. 1870, 6th edn. 1913MATH
33.67
Zurück zum Zitat C. Stumpf: Tonpsychologie, Vol. 1 (Barth, Leipzig 1883) C. Stumpf: Tonpsychologie, Vol. 1 (Barth, Leipzig 1883)
33.68
Zurück zum Zitat C. Stumpf: Tonpsychologie, Vol. 2 (Barth, Leipzig 1890) C. Stumpf: Tonpsychologie, Vol. 2 (Barth, Leipzig 1890)
33.70
Zurück zum Zitat R. Shepard: Circularity in judgements of relative pitch, J. Acoust. Soc. Am. 36, 2346–2353 (1964)CrossRef R. Shepard: Circularity in judgements of relative pitch, J. Acoust. Soc. Am. 36, 2346–2353 (1964)CrossRef
33.71
Zurück zum Zitat R. Shepard: Demonstrations of circular components of pitch, J. Audio Eng. Soc. 31, 641–649 (1983) R. Shepard: Demonstrations of circular components of pitch, J. Audio Eng. Soc. 31, 641–649 (1983)
33.72
Zurück zum Zitat J.-C. Risset: Computer, synthesis, perception, paradoxes, Hamburger Jahrb. Musikwiss. 11, 245–258 (1991) J.-C. Risset: Computer, synthesis, perception, paradoxes, Hamburger Jahrb. Musikwiss. 11, 245–258 (1991)
33.73
Zurück zum Zitat B. Repp: The tritone paradox and the pitch range of the speaking voice: A dubious connection, Music Percept. 12, 227–255 (1994)CrossRef B. Repp: The tritone paradox and the pitch range of the speaking voice: A dubious connection, Music Percept. 12, 227–255 (1994)CrossRef
33.74
Zurück zum Zitat D. Deutsch: The tritone paradox and the pitch range of the speaking voice: Reply to Repp, Music Percept. 12, 257–263 (1994)CrossRef D. Deutsch: The tritone paradox and the pitch range of the speaking voice: Reply to Repp, Music Percept. 12, 257–263 (1994)CrossRef
33.75
Zurück zum Zitat B. Repp: Spectral envelope and context effects in the tritone paradox, Perception 26, 645–665 (1997)CrossRef B. Repp: Spectral envelope and context effects in the tritone paradox, Perception 26, 645–665 (1997)CrossRef
33.76
Zurück zum Zitat C. Friedrich: Die Ambivalenz der Tonhöhenwahrnehmung des Tritonus. Eine empirische Studie basierend auf der Zweikomponenten-Theorie der Tonhöhe, MA Thesis (Univ. Hamburg, Hamburg 2006) C. Friedrich: Die Ambivalenz der Tonhöhenwahrnehmung des Tritonus. Eine empirische Studie basierend auf der Zweikomponenten-Theorie der Tonhöhe, MA Thesis (Univ. Hamburg, Hamburg 2006)
33.77
Zurück zum Zitat D. Howard, J. Angus: Acoustics and Psychoacoustics, 2nd edn. (Focal, Oxford 2001) D. Howard, J. Angus: Acoustics and Psychoacoustics, 2nd edn. (Focal, Oxford 2001)
33.78
Zurück zum Zitat A. Schneider: Klanganalyse als Methodik der Popularmusikforschung, Hamburger Jahrb. Musikwiss. 19, 107–129 (2002) A. Schneider: Klanganalyse als Methodik der Popularmusikforschung, Hamburger Jahrb. Musikwiss. 19, 107–129 (2002)
33.79
Zurück zum Zitat A. Schneider: Komposition und Produktion von ‘‘U-Musik’’ unter dem Einfluss technischer Medien. In: Handbuch Musik und Medien, ed. by H. Schramm (UVK Verlagsgesellschaft, Konstanz 2009) pp. 495–530 A. Schneider: Komposition und Produktion von ‘‘U-Musik’’ unter dem Einfluss technischer Medien. In: Handbuch Musik und Medien, ed. by H. Schramm (UVK Verlagsgesellschaft, Konstanz 2009) pp. 495–530
33.80
Zurück zum Zitat D. Huber, R. Runstein: Modern Recording Techniques, 8th edn. (Focal, Oxford 2013) D. Huber, R. Runstein: Modern Recording Techniques, 8th edn. (Focal, Oxford 2013)
33.81
Zurück zum Zitat H.P. Hesse: Die Wahrnehmung von Tonhöhe und Klangfarbe als Probleme der Hörtheorie (Gerig, Köln 1972) H.P. Hesse: Die Wahrnehmung von Tonhöhe und Klangfarbe als Probleme der Hörtheorie (Gerig, Köln 1972)
33.82
Zurück zum Zitat W. Thies: Grundlagen einer Typologie der Klänge (Wagner, Hamburg 1982) W. Thies: Grundlagen einer Typologie der Klänge (Wagner, Hamburg 1982)
33.83
Zurück zum Zitat G. Goley, W. Song, J. Kim: Kurtosis-corrected sound pressure level as a noise metric for risk assessment of occupational noises, J. Acoust. Soc. Am. 129, 1475–1481 (2011)CrossRef G. Goley, W. Song, J. Kim: Kurtosis-corrected sound pressure level as a noise metric for risk assessment of occupational noises, J. Acoust. Soc. Am. 129, 1475–1481 (2011)CrossRef
Metadaten
Titel
Sensation of Sound Intensity and Perception of Loudness
verfasst von
Albrecht Schneider
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_33

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.